# Relative permitivity of KCl
import math
# Variable declaration
atom=4 # number of atoms
kci=0.629*10**-9 # LAttice parameter of KCl
alfk=1.264*10**-40 # electronic polarisability for K+ ion
alfCl=3.408*10**-40 # electronic polarisability for Cl- ion
eps0=8.854*10**-12 # permitivity of free space
# Calculations
pol=alfk+alfCl
N=atom/kci**3
epsr=(N*pol/eps0)+1
#Result
print("\nThe electronic polarisability for KCL = %.3f *10^-40 F m^2\n"%(pol*10**40))
print("\nThe no of Dipoles per m^3 = %.3f * 10^28 atoms m^-3\n"%(N/10**28))
print("\nThe dielectric constant of KCL is %.3f"%epsr)
# electronic polarisability
import math
#variable declarations
r=0.12*10**-9 # atomic radius of Se
eps=8.854*10**-12 # permitivity of free space
# Calculations
alf=4*math.pi*eps*r**3
# Result
print("The electronic polarisability of an isolated Se is %.4f * 10^-40 F m^2"%(alf*10**40))
#electronic to ionic polarability ratio
import math
# Variable declaration
n=2.69 # refraction index
er=4.94 # dielectric cnstant
# calculations
alfi_by_alfe=(((n+2)*(er-1))/((er+2)*(n-1)))-1
# Result
print("The ratio of the electronic to ionic polarability is %.4f"%(1/alfi_by_alfe))
# dielectric constant
import math
#variable declaration
N= 2.7*10**25 # number of atoms
alfe=0.35*10**-40 # electronic polarisability
eps=8.854*10**-12 # permitivity of free space
# calculations
epsr=(1+(2*N*alfe)/(3*eps))/(1-(N*alfe)/(3*eps))
# Result
print("The dielectric constant of Ne gas is %.8f"%epsr)
# charge on the capacitor
import math
# Variable declaration
eps=8.85*10**-12 # permitivity of free space
epsr=6 # relative permitivity of dielectric
A=5*10**-4 # Area of the capacitor plate
d=1.5*10**-3 # distance between the plates
v=100 # Applied voltage
# calculations
Q=eps*epsr*A*v/d
# Result
print("The charge on the capacitor is %.2f * 10^-9 C"%(Q*10**9))
# dielectric constant
import math
# variable declaration
N=2.7*10**25 # Number of Ar atoms
d=0.384*10**-9 # diameter of Ar atom
eps=8.854*10**-12 # permitivity of free space
# calculations
alfe=4*math.pi*eps*d**3
alfe=alfe*10**-2 # correction
epsr=(1+((2*N*alfe)/(3*eps)))/(1-((N*alfe)/(3*eps)))
# Result
print("The dielectric constant of Ar is %.8f"%(epsr))
# correction is to match the answer in the book
# answer for alfe is given as 0.63 * 10^-40 but it is actually 0.63* 10^-38.
# Energy stored
import math
# Variable declaration
c=2*10**-6 # capacitance
epsr=80 # permitivity of the dielectric
v=1000 # Applied voltage
#Calculations
E1=(c*v**2)/2
c0=c/epsr
E2=(c0*v**2)/2
E=E1-E2
# Result
print("\nThe Energy stored in capacitor =%.0f J"%E1)
print("\nThe energy stored in polarising the capacitor = %.4f J"%E)
# nternal field to applied field ratio
import math
# Variable declaration
N=5*10**28 # no of atoms present per m^3
alfe=2*10**-40 # Polarisability
eps=8.854*10**-12 # permitivity of free space
# Calculations
P=N*alfe
E_ratio=1/(1-(P/(3*eps)))
# Result
print("The ratio of the internal field to the applied field = %.4f"%E_ratio)
# relative permitivity
import math
# Variable declaration
E=1000 # Applied electric field
P=4.3*10**-8 # Polarisation
eps=8.854*10**-12 # permitivity of free space
# calculations
epsr=1+P/(eps*E)
#Result
print("The relative permitivity of NaCl is %.2f"%epsr)
#polarisability of argon atom
import math
# Variable declaration
epsr=1.0024 # relative permitivity
N=2.7*10**25 # Number of atoms
eps=8.854*10**-12 # permitivity of free space
# calculations
alfe=eps*(epsr-1)/N
#Result
print("The polarisability of argon atom is %.1f * 10^-40 F m^2"%(alfe*10**40))
# electronic polarisability
import math
# Variable declaration
epsr=1.0000684 # Dielectric constant of the gas at NTP
N=2.7*10**25 # Number of He atoms
eps=8.854*10**-12 # permitivity of free space
#calculations
alfe=eps*(epsr-1)/N
#Result
print("The electronic polarisability of He atom at NTP is %.3f * 10^-41 F m^2"%(alfe*10**41))
# electronic polarisability
import math
# variable declaration
epsr=12 # relative dielectric constant of material
N=5*10**28 # number of atoms in the element
eps=8.854*10**-12 # permitivity of free space
#Calculations
alfe=eps*(epsr-1)/N
# result
print("The electronic polarisability of given element is %.3f * 10^-39 F m^2"%(math.floor(alfe*10**39*1000)/1000))
# energy stored in dielectric
import math
# variable declaration
c=2*10**-6 # capacitance of plate condenser
v=1000 # applied voltage
epsr=100 # dielectric permitivity
# calculations
E=(c*v**2)/2
c0=c/epsr
e2=(c0*v**2)/2
E1=E-e2
# Result
print("The energy stored in dielectric is %.2f J"%E1)
# electronic polarisability
import math
#variable declaration
epsr=3.4 # dielectric constant of sulphur
eps=8.854*10**-12 # permitivity of free space
d=2.07*10**3 # density of sulphur
w=32.07 # Atomic weight
Avg=6.023*10**23 # avogadro's number
# calculations
N=Avg*10**3*d/w
N= (math.ceil(N*10**-26))/10**-26
alfe=3*eps*(epsr-1)/(N*(epsr+2))
#Result
print("The electronic polarisability of sulphur is %.3f * 10^-40 F.m^2"%(alfe*10**40))
# charge stored and polarisation produced in the plate
import math
#variable declaration
A=6.45*10**-4 # Area of the capacitor plate
d=2*10**-3 # distance between plates
epsr=6 # relative permitivity
v=10 # applied voltage
eps=8.854*10**-12 # permitivity in free space
# calculations
c=eps*epsr*A/d
q=c*v
E=v/d
p=eps*(epsr-1)*E
# Result
print("Capacitance of Capacitor = %.2f pF"%(c*10**12))
print("\ncharge stored on the plate is %.2f *10^-11 C"%(q*10**11))
print("\nPolarisation produce in the plate is %.3f *10^-7 Cm^-2"%(math.ceil(p*10**7*1000)/1000))
# answer forstored charge is wrong in the book
# Polarisation produced in NaCl\
import math
# Variable declaration
E=600*10**3 # electric field strength
eps=8.854*10**-12 # permitivity in free space
epsr=6 # dielectric constant of sodium chloride
# calculations
p=eps*(epsr-1)*E
# Result
print("Polarisation produced in NaCl is %.3f *10^-5 C.m^-2"%(p*10**5))
# Relative permitivity
import math
# Variable declaration
E=1000 # applied electric field
p=4.3*10**-8 # Polarisation
eps=8.854*10**-12 # permitivity of free space
#Calculations
epsr=1+p/(eps*E)
#Result
print("Relative permitivity of NaCl is %.2f"%epsr)
# voltage across capacitor and electric field strength
import math
# variable declaration
A=1000*10**-6 # Area of the capacitor plate
d=5*10**-3 # distance between the plate
epsr=4 # relative permitivity of the dielectric
Q=3*10**-10 #charge on the capacitor
eps=8.854*10**-12 # permitivity of free space
# Calculations
c=(eps*epsr*A)/d
v=Q/c
E=v/d
# Result
print("The voltage across capacitor is %.2f V\nThe electric field strength is %d V/m"%(v,E))
# electronic polarisability
import math
# Variable declaration
epsr=1.0000684 # dielectric constant of the gas at NTP
N=2.7*10**25 # Number of He atoms
eps=8.85*10**-12 # permitivuty of free space
# calculations
alfe=eps*(epsr-1)/N
# Result
print("The electronic polarisability of He atoms at NTP is %.3f *10^-41 F.m^2"%(alfe*10**41))
# Capacitance and electric field strength
import math
# Variable declaration
A=3*10**-3 # area of the capacitor plate
d=1*10**-3 # distance between the plate
epsr=3.5 # relative permitivity of the dielectric
Q=20*10**-9 # charge on the capacitor
eps=8.85*10**-12 # permitivity of free space
# calculations
c=eps*epsr*A/d
E=Q/(c*d)
# Result
print("The capacitance of capacitor is %.2f pF"%(math.ceil(c*10**14)/100))
print("The electric field strength is %.2f*10^3 V/m"%(math.floor(E*10**-1)/100))
# capacitance, stored charge, polarisation and dielectric displacement
import math
# variable declaration
A=7.45*10**-4 # Area of the capacitor plates
d=2.45*10**-3 # distance between the plates
epsr=6 # relative permitivity of the dielectric
v=10 # applied voltage
eps=8.85*10**-12 # permitivity of free space
#Calculations
c=eps*epsr*A/d
Q=c*v
E=v/d
p=eps*(epsr-1)*E
D=eps*epsr*E
# Result
print("\nThe capacitance of the capacitor is %.3f pF"%(c*10**12))
print("\nCharge stored on capacitor = %.3f *10^-11 C\n\nE=%.2f*10^3 V/m"%(Q*10**11,E*10**-3))
print("\nPolarisation=%.3f*10^-7 C.m^-2\n\ndielectric displacement = %.3f*10^-7 C.m^-2"%(p*10**7,D*10**7))
# polarisation produced
import math
#variable declaration
E=500 # electric field strength
epsr=6 # dielectric constant of sodium cloride
eps=8.854*10**-12 # permitivity of free space
# calculations
p=eps*(epsr-1)*E
# Result
print("The polarisation produced in NaCl is %.3f * 10^-8 C.m^-2"%(math.ceil(p*10**11)/1000))
# polarisation produced in NaCl
import math
#Variable declaration
E=500 # electric field strength
epsr=15 # dielectric constant of sodium cloride
eps=8.854*10**-12 # permitivity of free space
#calculations
p=eps*(epsr-1)*E
#Result
print("The polarisation produced in NaCl is %.3f * 10^-8 C.m^-2"%(p*10**8))
# Voltage across capacitor
import math
#variable declaration
A=650*10**-6 # Area of the capacitor plate
d=4 *10**-3 # distance between the plates
epsr=3.5 # relative permitivity of the dielectric
eps=8.85*10**-12 # permitivity of free space
q=2*10**-10 # charge on the capacitor
# calculations
v=q*d/(eps*epsr*A)
# Result
print("The voltage across capacitor is %.2f V"%v)
# charge on the capacitor
import math
# variable declaration
A=5*10**-4 # Area of the capacitor plates
d=1.5*10**-3 # Distance between the plates
epsr=6 # Relative permitivity of the dielectric
v=100 # Applied voltage
eps=8.854*10**-12 # permitivity of free space
#calculation
q=eps*epsr*A*v/d
#Result
print("The charge on the capacitor is %.2f *10^-9 C"%(q*10**9))
#dielectric constant
import math
#variable declaration
d=2.08*10**3 # density of sulphur
wt=32 # atomic weight of sulphur
ep=3.28*10**-40 # electronic polarisability
eps=8.854*10**-15 # permeability of free space
# Calculations
k=(3*10**28*7*10**-40)/(3*eps)
epsr=2.5812/(1-0.7906)
# result
print("The dielectric constant of the given material is %.3f"%epsr)