# wavelength and frequency of X-rays
import math
#Variable Declaration
h=6.626*10**-34 # Planck's constant
e=1.6*10**-19 # charge of an electron
c=3.0*10**8 # speed of light
v=10000.0 # Applied potential difference
#Calculation
lam_min=(h*c)/(e*v)
V=c/lam_min
#Result
print('\n(i)\nThe wavelength of X-rays emitted Lamda_min = %.2f A°\n(ii)\nThe frequency of X-ray beam emitted is %.1f*10^18 Hz'%(lam_min*10**10,V*10**-18))
# wavelength and velocity of electrons
import math
#Variable Declaration
v=10000.0 # Applied potential difference
i=2*10**-3 # Current
e=1.6*10**-19 # charge of an electron
t=1.0 # time in second
m=9.1*10**-31 # mass of an electrons
#(i)
#Calculation
n=i*t/e
#Result
print('The no of electrons striking the target per second =%.2f *10^16'%(n*10**-16))
#(ii)
#Calculation
v1=math.sqrt(2*e*v/m)
#(iii)
#Calculation
lam=12400.0/v
#Result
print('\n(ii)\nThe velocity of electron =%.2f*10^7 m/s\n(iii)\nWavelength of x-rays=%.2f A°'%(v1*10**-7,lam))
# wavelength and angle for 2nd order bragg reflection
import math
#variable Declaration
d=5.6534*10**-10 # interplanar spacing
theta=13.6666 # glancing angle
n=1.0 # order of diffraction
#(i)
#Calculation
lam=2*d*math.sin(theta*math.pi/180)/n
#Result
print('\n(i)\nWavelength of the X-rays, Lambda =%.3f*10^-10 m'%(lam*10**10))
#(ii)
#calculation
n=2.0
theta=math.asin(n*lam/(2*d))
theta=theta*180/math.pi
#Result
print('\n(ii)\n2nd order Bragg reflection at angle Theta2 = %f°'%theta)
# Grating spacing and glancing angle
import math
#Variable Declaration
v=24800.0 # Applied potential difference
n=1.0 # order of diffraction
lam=1.54*10**-10 # wavelength of the X-ray beam
ga=15.8 # glancing angle
#(i)
#calculation
d=n*lam/(2*math.sin(ga*math.pi/180))
#Result
print('\n(i)\nGrating spacing for NaCl crystal =%.3f *10^-10 m'%(d*10**10))
#(ii)
#calculation
lam_min=12400.0/v
lam_min=lam_min*10**-10
theta=math.asin(n*lam_min/(2*d))
theta=theta*180/math.pi
#Result
print('\n(ii)\nGlancing angle for minimum wavelength = %.3f degrees'%theta)
# Glancing angle in the book is in the degree second format
# wavelength of radiation
import math
#variable Declaration
lam=0.7078 *10**-10 # wavelength of Ka line from molybdenum
wt=42.0 # Atomic number of molybdenum
wt1=48.0 # Atomic number of cadmium
#calculation
lam1=(lam*(wt-1)**2)/(wt1-1)**2
#Result
print('\nWavelength of cadmium radiation is %.4f A°'%(lam1*10**10))
# Energy of thermal neutron
import math
#Variable Declaration
lam=10.0**-10 # Wavelength of neutron
h=6.626*10**-34 # Planck's constant
m=1.675*10**-27 # mass of an electron
e1=1.602*10**-19 # charge of an electron
#calculation
e=(h**2)/(2*m*lam**2)
e=e/e1
#Result
print('\nThe energy of thermal neutron with wavelength 1 A° is %.2f eV'%e)
# effect of temperature on wavelength
import math
#Variable Declaration
lam=0.1 # Wavelength of neutron in nm
#calculation
T=(2.516**2)/(lam)**2
#Result
print('Temperature of thermal neutron corresponding to 1 A° is %.0f K'%T)