# Variables
t_s = 3.; #in mm
t_c = 24.; #in mm
b = 100.; #in mm
# Calculations
d = (t_s+t_c)/2; #in mm
is_ = ((b*t_s**3)/12)+(b*t_s*d**2); #in mm**4
ic = b*t_c**3/12 #in mm**4
Es = 7000.; #moduli of polyester skin in N/mm**2
m_f = 20.; #moduli of foam core in N/mm**2
d_fr = (2*Es*is_)+(m_f*ic); #in N/mm**2
Ts = 6
D_s = (Es*b*Ts**2)/12
c = d_fr/D_s
# Results
print "Flexural rigidity (in N/sqm) = %.2e"%d_fr
print "Ds = %.1e N mm**2"%D_s
print "Flexural rigidity of sandwich beam is %d times more"%c
# Note : answer in book is wrong for D_s please check manually.
# Variables
ec = 210.; #in GPa
ea = 71.; #in GPa
eb = 440.; #in GPa
# Calculations
va = (ec-eb)/(ea-eb);
vb = 1-va;
c = vb/va;
# Results
print "Volume ratio = %.2f"%c
# note : answer in book is wrong . please calculate manually.
# Variables
ef = 430.; #in GPa
e = 3.6; #in GPa
m = ef/e;
vf = 0.15; #by volume
# Calculations
vm = 1-vf;
x = vm/vf;
pf = m;
pc = m+x;
y = pf/pc;
vf1 = 0.65
vm1 = 1-vf1;
z = vm1/vf1;
pc1 = m+z;
zz = pf/pc1;
# Results
print "fraction of load carried by fibres (15 %% by volume) = %.2f"%y
print "fraction of load carried by fibres (65 %% by volume) = %.4f"%zz
# Variables
vf = 0.65;
vm = 1-vf;
kts = 2.8; #in Gpa
ets = 0.0025; #in GPa
# Calculations and Results
ac = (kts*vf)+(ets*vm); #in GPa
print "Longitudinal Strength (in GPa) = %.2f"%ac
ktm = 130.; #in GPa
etm = 3.5; #in GPa
ec = (ktm*vf)+(etm*vm);
print "Longitudianl Modulous (in GPa) = %.2f"%ec
e_c = 1/((vf/ktm)+(vm/etm));
print "Transverse Modulous (in GPa) = %.2f"%e_c
kp = 0.34; #in GPa
ep = 0.36; #in GPa
vlt = (vf*kp)+(vm*vm);
print "Poissons Ratio = ",vlt
glt = 1./((vf/2.2)+(vm/1.2)); #in GPa
print "Shear Modulous (in GPa) = %.2f"%glt
# note: answer in book is wrong for part a. please calculate manually.