# Variables
a1 = 1.0078; #atomic weight of H-1
a2 = 2.0143; #atomic weight of H-2
p1 = 99.985; #% of H-1
p2 = .015; #% of H-2
# Calculations
a = ((a1*p1)+(a2*p2))/100
# Results
print "Average atomic weight of Hydrogen = %.3f"%a
# Variables
z = 79.; #atomic no. of gold
e = 7.68*1.6*10**-13; #ke in J
e_c = 1.6*10**-19; #charge of electron in C
e_0 = 8.854*10**-12; #permittivity F/m
#Calculations
d = (2*e_c**2*z)/(4*3.14*e_0*e); #distance in m
# Results
print "distance (in m) = %.2e m"%d
import math
# Variables
n = 44.; #no. of particles scattered per minute
a = 90.; #angle in degrees
b = 75.; #angle in degrees
d = 135.; #angle in degrees
# Calculations
x = math.sin(math.radians(a/2));
c = n*x**4;
y = math.sin(math.radians(b/2));
n1 = c/y**4;
z = math.sin(math.radians(d/2));
n2 = c/z**4;
# Results
print "Proportionality constant = ",c
print "No. of particles scattered at 75 degree (in per minute) = %d"%n1
print "No. of particles scattered at 135 degree (in per minute) = %d"%n2
import math
# Variables
n = 1. #first orbit
e_0 = 8.85*10**-12; #permittivity in freee space
h = 6.62*10**-34; #planck's consmath.tant
m = 9.1*10**-31; #mass of an electron in kg
e = 1.6*10**-19; #charge of an electron in C
z = 1.;
# Calculations
r = n**2*e_0*h**2/(3.14*m*e**2*z); #radius of first orbit in m
r1 = r*10.**10; #radius in Angstorm
# Results
print "Radius of first orbit of electron in Hydrogen atom (in Angstorm) = %.2f A"%r1
import math
# Variables
e_0 = 8.85*10**-12; #permittivity in freee space in sqC/N/sqm
h = 6.62*10**-34; #planck's constant in Js
m = 9.1*10**-31; #mass of an electron in kg
e = 1.6*10**-19; #charge of an electron in C
z = 1.; #for hydrogen
n = 1.;
# Calculations
e = m*z**2*e**4/(8*e_0**2*h**2*n**2); #ionisation energy in J
e1 = e/(1.602*10**-19); #in eV
# Results
print "Ionisation Energy (in J) = %.2e J"%e
print "Ionisation Energy (in eV) = %.1f V"%e1
# Variables
n = 4.; #fourth orbit
# Calculations
a = (0+1)/n; #for s suborbit
b = (1+1)/n; #for p suborbit
c = (2+1)/n; #for d suborbit
d = (3+1)/n; #for f suborbit
# Results
print "For s suborbit b/a = ",a,"a"
print "For p suborbit b/a = ",b,"a"
print "For d suborbit b/a = ",c,"a"
print "For f suborbit b/a = ",d,"a"
# Variables
h = 6.62*10**-34; #planck's constant in Js
p = 10**-27; #uncertainity in momentum in kg m/s
# Calculations
x = h/(2*3.14*p); #uncertainity in position in m
# Results
print "Minimum Uncertainity in Position (in m) = %.3e"%x