Chapter09:Fracture of Metals

Ex9.1:pg-200

In [2]:
#Example 9.1 : difference
import math 
#given data :
E=200*10**9; # in N/m**2
C=(4*10**-6)/2;# in m
gama=1.48; # in J/m**2
sigma=math.sqrt((2*E*gama)/(math.pi*C));
print round(sigma*10**-6),"= fracture strength,sigma(MN/m**2) "
307.0 = fracture strength,sigma(MN/m**2) 

Ex9.2:pg-200

In [2]:
#Example 9.2 : the fracture strength and compare
 
import math
#given data :
E=70*10**9; # in N/m**2
C=(4.2*10**-6)/2;# in m
gama=1.1; # in J/m**2
sigma=math.sqrt((2*E*gama)/(math.pi*C));
print "{:.3e}".format(sigma),"= fracture strength,sigma(N/m**2)  "
1.528e+08 = fracture strength,sigma(N/m**2)  

Ex9.3:pg-200

In [5]:
#Example 9.3 : maximum length of surface
import math

#given data :
sigma=36;#in MN/m**2
gama=0.27;# in J/m**2
E=70*10**9;#in N/m**2
C=((2*E*gama)/(sigma**2*math.pi))*10**-6;
C2=2*C;
print round(C2,3),"= maximum length of surface flow,C2(micro-m)   "
18.568 = maximum length of surface flow,C2(micro-m)   

Ex9.4a:pg-203

In [8]:
# Example 9.4.a: Temperature
 
import math
E=350;# in GN/m**2
Y=2;# in J/m**2
C=2;# in micro meter
sg=math.sqrt((2*E*10**9*Y)/(math.pi*C*10**-6));# IN mn/M**2
e=10**-2;# per second
T=173600/(round(sg*10**-6)-20.6-61.3*(math.log10(e)));# in kelvin
print round(T,1),"= temperature in kelvin for ductile to brittle transition at a strain rate of 10**-2 per second"
302.4 = temperature in kelvin for ductile to brittle transition at a strain rate of 10**-2 per second

Ex9.4b:pg-203

In [10]:
# Example 9.4.b: Temperature
import math

E=350;# in GN/m**2
Y=2;# in J/m**2
C=2;# in micro meter
sg=math.sqrt((2*E*10**9*Y)/(math.pi*C*10**-6));# IN mn/M**2
e=10**-5;# per second
T=173600/(round(sg*10**-6)-20.6-61.3*(math.log10(e)));# in kelvin
print round(T),"= temperature in kelvin for ductile to brittle transition at a strain rate of 10**-5 per second"
229.0 = temperature in kelvin for ductile to brittle transition at a strain rate of 10**-5 per second