#importing modules
import math
from __future__ import division
#Variable declaration
sigma0=8.55;
K=2.45;
sigma=10**-3; #steel size(mm)
#Calculation
sigma=sigma0+(K/math.sqrt(sigma)); #yield strength
#Result
print "yield strength is",round(sigma,3),"kg/mm**2"
#importing modules
import math
from __future__ import division
#Variable declaration
E=70*10**9; #young's modulus(Pa)
gama=1; #surface energy(joule/m**2)
C=1*10**-6; #depth(m)
#Calculation
sigma_f=math.sqrt(2*E*gama/(math.pi*C)); #fracture strength(GPa)
#Result
print "fracture strength is",round(sigma_f/10**9,3),"GPa"
#importing modules
import math
from __future__ import division
#Variable declaration
ml=57800; #load(N)
d=10*10**-3; #diameter(m)
D=5; #diameter after fracture(mm)
l=50; #guage length(mm)
L=55; #length after fracture(mm)
#Calculation
ts=ml/(math.pi*(d/2)**2); #ultimate tensile strength(MPa)
de=(L-l)*100/l; #ductility % of elongation(%)
dr=((2*D)**2-D**2)*100/(2*D)**2; #ductility % of reduction(%)
t=(2/3)*ts*de/100; #modulus of toughness(Pa)
#Result
print "ultimate tensile strength is",round(ts/10**6),"MPa"
print "ductility % of elongation is",de,"%"
print "ductility % of reduction is",dr,"%"
print "modulus of toughness is",int(t/10**6),"*10**6 Pa"
#importing modules
import math
from __future__ import division
#Variable declaration
pl1=206850*10**3; #proportional limit(Pa)
pl2=310275*10**3; #proportional limit(Pa)
pl3=413700*10**3; #proportional limit(Pa)
s2=0.0615; #strain
s3=0.2020; #strain
Y=2.0685*10**11; #young's modulus(Pa)
#Calculation
e1=pl1/Y; #elastic strain in 1st case
e2=pl2/Y; #elastic strain in 2nd case
p2=s2-e2; #plastic strain in 2nd case
r2=e2*100/p2; #ratio of elastic and plastic strain in 2nd case
e3=pl3/Y; #elastic strain in 2nd case
p3=s3-e3; #plastic strain in 2nd case
r3=e3*100/p3; #ratio of elastic and plastic strain in 3rd case
#Result
print "elastic strain in 1st case is",e1
print "ratio of elastic and plastic strain in 2nd case is",r2,"%"
print "ratio of elastic and plastic strain in 3rd case is",r3,"%"
#importing modules
import math
from __future__ import division
#Variable declaration
s=12411*10**3; #stress(Pa)
t=0.0168; #tension
e=0.127; #elongation(cm)
l=15.24; #length(cm)
g=9.8;
L=68.04; #load(kg)
#Calculation
E_eff=s/t; #effective modulus(Pa)
S=e/l;
W=E_eff*S;
A=L*g/W; #cross sectional area(m**2)
#Result
print "effective modulus is",E_eff/10**3,"*10**3 Pa"
print "cross sectional area is",round(A*10**4,4),"*10**-4 m**2"
#importing modules
import math
from __future__ import division
#Variable declaration
E=35*10**10; #youngs modulus(Pa)
gama=2; #specific surface energy(J/m**2)
C=2*10**-6; #length(m)
x=17700;
y=2.1;
z=31.25;
#Calculation
sigma_f=math.sqrt(2*E*gama/(math.pi*C)); #fracture stress(Pa)
T=x/((sigma_f/(9.8*10**6))-y+z); #transition temperature(K)
#Result
print "transition temperature is",round(T),"K"
#importing modules
import math
from __future__ import division
#Variable declaration
h1=1;
h2=1;
k1=1;
k2=1;
l1=1;
l2=1;
l3=0;
s=3.5*10**6; #stress(Pa)
#Calculation
x=math.sqrt(h1**2+k1**2+l1**2);
y=math.sqrt(h2**2+k2**2+l2**2);
z=math.sqrt(h2**2+k2**2+l3**2);
cos_phi=((h1*h2)-(k1*k2)+(l1*l2))/(x*y);
sin_phi=math.sqrt(1-(cos_phi)**2);
cos_theta=((h1*h2)+(k1*k2)+(l1*l3))/(x*z);
ss=s*cos_theta*cos_phi*sin_phi; #critical resolved shear stress(Pa)
#Result
print "critical resolved shear stress is",round(ss/10**6,3),"MPa"
#importing modules
import math
from __future__ import division
#Variable declaration
dz1=4*10**-18; #diffusivity(m**2/s)
dz2=5*10**-13; #diffusivity(m**2/s)
T1=773; #temperature(K)
T2=1273; #temperature(K)
T3=573; #temperature(K)
T4=973; #temperature(K)
#Calculation
x1=round(math.log(dz1),2);
y1=round(math.log(dz2),3);
x2=round(-1/(8.314*T1),7);
y2=round(-1/(8.314*T2),7);
x=round((x1-y1),3);
y=round((x2-y2),6);
Q=x/y; #activation energy(J/mol)
z=round(y1-(y2*Q),4);
D0=math.exp(z); #diffusion coefficient(m**2/Vs)
D1=D0*math.exp(-Q/(8.314*T3)); #diffusivity at 300 C(m**2/s)
D2=D0*math.exp(-Q/(8.314*T4)); #diffusivity at 700 C(m**2/s)
#Result
print "activation energy is",round(Q/10**3,3),"kJ/mol"
print "answer varies due to rounding off errors"
print "diffusion coefficient is",round(D0*10**4,3),"*10**-4 m**2/s"
print "diffusivity at 300 C is",round(D1*10**23,2),"*10**-23 m**2/s"
print "diffusivity at 700 C is",round(D2*10**15,3),"*10**-15 m**2/s"
print "answer given in the book is wrong"
#importing modules
import math
from __future__ import division
#Variable declaration
D0=0.73*10**-4; #diffusion coefficient(m**2/s)
Q=170*10**3; #activation energy(J/mol)
R=8.314;
T=873; #temperature(K)
#Calculation
D=D0*math.exp(-Q/(R*T)); #diffusion(m**2/s)
#Result
print "diffusion is",round(D*10**15,1),"*10**-15 m**2/s"