import math
#initialisation of variables
Q= 450. #ft**3/sec
k= 0.5
i= 1./2000
C= 105. #ft**1/2/sec
#CALCULATIONS
d= (((Q*math.sqrt(2./i))/(2*math.sqrt(1+k**2-k)*C))**(2./5))*(5.41/7.55)
b= d/2.
s= d*math.sqrt(1+k**2.)
#RESULTS
print ' vertical= %.2f ft'%(d)
print ' horizontal= %.2f ft'%(s)
import math
#initialisation of variables
d= 6. #ft
C= 95. #ft**0.5/sec
i= 1./800
m= 1.705 #ft
a= 15.16
g= 32.2 #ft**2/sec
alpha = 15.30 # degree
#CALCULATIONS
theta = int(180 + 2*alpha)
A= ((d/2)**2./2)*(((theta*math.pi)/180)+math.sin(math.radians(2*a)))
u= C*math.sqrt(m*i)
Q= A*u
f= (2*g)/C**2.
#RESULTS
print ' rate of volumetric flow= %.1f ft**3/sec'%(Q)
print ' resistance factor= %.5f '%(f)
import math
#initialisation of variables
m= 6. #lb/sec
w= 62.3 #lb/ft**3
s= 0.9
l= 2500. #ft
u= 0.115
r= 8. #ft
g= 32.2 #ft/sec**2
#CALCULATIONS
uc = round(2300*u/.25 * 1/(s*w),1)
v = round(m/(s*w) * 1./(math.pi/4 *1./16),2)
p1p2 = (r*u)/math.pi * l * 64**2 * 6 /(s*w*g)
dp= 8.*u*l*r**4*m/(math.pi*s*w*g)
P= m*dp/(s*w*550.)
#RESULTS
print ' Critical Velocity is = %.1f ft/sec'%uc
print ' Actual Velocity is = %.2f ft/sec'%v
print ' Power required= %.f h.p'%(P)
# Note : Answers may vary because of rounding error. Please calculate manually.
import math
#initialisation of variables
p= 0.0024 #slug/ft**3
u= 10. #ft/sec
v= 3.75*10**-7 #slug
d= 0.25 #in
u1= 100. #ft/sec
#CALCULATIONS
R= round(u*d*p/(12.*v),-1)
f= round(16./R,3)
F1= f*p*u**2*math.pi*d/(2*12.)
R1= R*10.
f1= 0.0791/R1**0.25
F2= f1*p*u1**2*math.pi*d/(2*12*10.)
C= F2/F1
#RESULTS
print ' Raynolds number = %.0f'%R
print ' resistance coefficient = %.2f '%(f)
print ' Drag force per foot length = %.2e lbf/ft'%(F1)
print ' Ratio of skin-friction drag forces per ft = %.2f '%(C)
import math
#initialisation of variables
Q= 0.7 #ft**3/sec
a= 16.
n= 0.65
P= 5. #h.p
l= 3000. #ft
g= 32.2 #ft**2/sec
d= 0.85 #gm/cc
d1= 0.5 #ft
#CALCULATIONS
u= Q*a/math.pi
u1= n*P*550.*g/(8*math.pi*u**2*l)
v= u1/d
R= round(u*d1*30.5**2/1.05,-1)
#RESULTS
print "Coefficient of viscosity is = %.2f ft/sec"%u
print ' Reynolds number= %.f '%(R)
import math
#initialisation of variables
u1= 80. #ft/sec
c= 62.
s= 0.25
l= 11. #ft
w= 62.3 #lb/ft**3
u1= 80. #ft/sec
d= 2. #lbf/in**2
#CALCULATIONS
u= u1*c/(l*w*s)
P= ((u1/u)**2)*s*d*144./(l*w)
#RESULTS
print ' water velocity = %.2f ft/sec'%(u)
print ' w pressure drop = %.3f lbf/ft**2 per ft length'%(P)