#initialisation of variables
b= 15. #in
h= 1.25 #in
h1= 2.75 #in
g= 32.2 #ft/sec**2
#CACULAIONS
Q= 3.09*(b/12.)*(h/12.)**1.5
u1= Q*144./(b*h1)
H= (u1**2./(2.*g))*12.
h2= H+h
Q1= 3.09*(b/12)*(h2/12.)**1.5
#RESULTS
print ' Q = %.2f ft**3/sec'%Q
print ' Rate of flow= %.4f ft**3/sec'%(Q1)
import math
#initialisation of variables
C= 100. #ft**0.5/sec
m= 2. #ft
i= 0.0003
y1= 2.6 #ft
y2= 2.5 #ft
#CALCULATIONS
u= C*math.sqrt(m*i)
f= u**2./(2.*32.2)
x= i/(1-f)
x1= round((y1-y2)/x,-1)
#RESULTS
print ' Distance= %.f ft'%(x1)
import math
#initialisation of variables
u1= 0.5 #ft**3/sec
b= 5. #ft
w= 4. #ft
g= 32.2 #ft/sec**2
#CALCULATIONS
u= u1*12.*12/(b*w)
s= math.sqrt(g*w/12.)
F= u/s
r= 0.5*(math.sqrt(1.+8*F**2)-1)
y= r*w
yc= (((w*y*(y+w)))/2.)**(1/3.)
#CALCULATIONS
print ' critical depth= %.2f in'%(yc)
# answer may vary because of rounding error
import math
#initialisation of variables
w= 2. #ft
F= 3.
d= 2. #ft
g= 32.2 #ft/sec**2
w1= 62.3 #lbf/ft**3
#CALCULATIONS
r= 0.5*(math.sqrt(1+8.*F**2.)-1)
y1= w/r
dy= w-y1
h1= dy**3/(4*w*y1)
u1= F*math.sqrt(g*y1)
W= w1*y1*u1*d*h1/550.
#RESULTS
print ' Horse-power dissipated = %.2f h.p'%(W)
import math
#initialisation of variables
Q= 20. #ft/sec
h= 12. #in
g= 32.2 #ft/sec**2
#CALCULATIONS
F= Q/math.sqrt(g*h/12.)
r= 0.5*(math.sqrt(1+8.*F**2)-1)
y= h*r/12.
s=(y-(h/12.))**3*12./(4.*h*y)
Q1= s*62.3*Q/550.
#RESULTS
print ' Rate of flow= %.2f in'%(Q1)
# Answers may vary because of rounding error
import math
#initialisation of variables
d= 0.94
b= 20. #ft
h= 5. #ft
w= 40. #ft
g= 32.2 #ft/sec**2
#CALCULATIONS
Q= 0.309*d*b*h**1.5
u=Q/(h*w)
h1= h+(u**2/(2*g))
Q1= 0.309*d*b*h1**1.5
#RESULTS
print ' Rate of flow= %.1f ft**3/sec'%(Q1)
# Answer may vary because of rounding error.