#initialisation of variables
H= 33. #ft lbf/lbf
Q= 100. #ft**3/min
w= 62.4 #lbf/ft**3
s= 0.8
#CALCULATIONS
P= s*w*Q*H/33000.
#RESULTS
print ' power required= %.2f h.p'%(P)
#initialisation of variables
import math
g= 32.2 #ft/sec**2
h= 1. #in
ww= 62.4 #lbf/ft**3
w= 0.0764 #lbf/ft**3
#CALCULATIONS
u= math.sqrt(2*g*h*(1./12)*(ww/w))
#RESULTS
print ' speed of air through the tunnel= %.1f ft/sec'%(u)
#initialisation of variables
import math
za= 0. #ft
zb= 12. #ft
w= 62.3 #lbf/ft**2
pa= 750. #lbf/in**2
p= 700. #lbf/in**2
ua= 3. #ft/sec
g= 32.2 #ft/sec**2
d= 2. #in**2
#CALCULATIONS
ub= 4*ua
Hl= (za-zb)+((pa-p)*144/w)+(ua**2-ub**2)/(2*g)
P= (w*ua*(math.pi/4)*Hl*d**2)/(144*550.)
#RESULTS
print ' horse-power expended in over coming losses= %.2f h.p'%(P)
#initialisation of variables
import math
d= 1. #in
d1= 3. #in
h= 9. #in
p= 3. #percent
g= 32.2 #ft/sec**2
s= 13.6 #gm/cm**3
a= 0.97
#CALCULATIONS
Ka= 1./(1-(d/d1)**2)
C= Ka*math.pi*(d/2)**2*math.sqrt(2*g*(s-1))/144
C1= a*C
Q= C1*h/12.
#RESULTs
print ' flow rate = %.2f ft**3/sec '%(Q)
#initialisation of variables
import math
Q= 1.4 #ft**3/sec
d= 6. #in
d1= 3. #in
h= 9. #in
s= 13.6/0.78
Cd= 0.96
g= 32.2 #ft/sec**2
w= 62.3 #lb/ft**3
#CALCULATIONS
h1= (Q*4.*12**2/(Cd*math.pi*d1**2))**2*(1-(d1/(2*d))**2)/(2*g*(s-1))
dpbyw= (h/12.)+((s)-1)*h1
dp= dpbyw*h1*w/144.
#RESULTS
print ' pressure difference = %.2f lbf/in**2 '%(dp)
# Note : answer may be vary because of rounding error.
#initialisation of variables
import math
C= 0.6
s= 0.0767 #lbf/ft**3
g= 32.2 #ft/sec**2
w= 62.4 #lbf/ft**3
Hw= 0.7 #in
#CALCULATIONS
Ha= Hw*w/(s*12)
Q= C*math.pi*math.sqrt(2*g*Ha)/144.
#RESULTS
print ' volumetric flow rate = %.3f ft**3/sec '%(Q)
#initialisation of variables
import math
g= 32.2 #ft/sec**2
h= 5. #ft
Q= 0.6 #ft**3/sec
Cd= 0.6
d= 2. #in
Q1= 0.315 #ft**3/sec
h1= 8. #ft
h2= 2. #ft
A= 9. #ft**2
#CALCULATIONS
H= Q1**2./((Cd*math.pi*(d/24.)**2.)**2.*2*g)
T= A*2*(math.sqrt(h1)-math.sqrt(h2))/(Cd*math.sqrt(2.*g)*60.*(d/24.)**2)
dhbyt= (Q-Cd*math.pi*(d/24.)**2*math.sqrt(2*g*h))*60*12/(math.pi*A)
#RESULTS
print 'depth of the water = %.f ft '%(H)
print 'time taken = %.1f min '%(T)
print 'rate of rise in water = %.1f in/min '%(dhbyt)
#initialisation of variables
import math
d= 8. #in
d1= 1.5 #in
Cd= 0.65
w= 62.3 #lbf.ft**3
W= 25. #tonf
u= 5. #miles/hour
u1= 20.5 #miles/hour
#CALCULATIONS
ds= W*2240*d1**4*Cd**2*math.log(u1/u)/(w*d**4*math.pi*(d/24)**2)
T= W*2240*d1**4*Cd**2*((5/(u*7.33))-(20/(u1*29.35)))/(w*d**4*math.pi*(d/24)**2)
#RESULTS
print ' Distance that piston moves= %.2f ft '%(ds)
print ' time taken = %.4f sec '%(T)
print " Answers may vary because of rounding error."
#initialisation of variables
c= 0.002378 #slug/ft**3
u= 420. #mile/hour.
#CALCULATIONS
P= 0.5*c*u*616**2/420.
#RESULTS
print ' Dynamic pressure= %.f lbf/ft**2 '%(P)
#initialisation of variables
import math
g= 32.2 #ft/sec**2
A= 13. #in**2
l= 10. #in**1.5
#CALCULATIONS
Q= 2*math.pi*1.05*math.sqrt(2*g*12.)*A*l/1728.
#RESULTS
print ' Rate of flow= %.1f ft**3/sec '%(Q)
print 'Answer may vary because of rounding error'