#initialisation of variables
w= 1100. #rev/min
Q= 1. #ft**3/min
r= 2. #in
#CALCULATIONS
Q1= r**2*Q
N= w/r
#RESULTS
print 'allowable speed = %.f rev/min'%(N)
#initialisation of variables
import math
n= 15. #knots
#CALCULATIONS
Um= n/math.sqrt(36.)
#RESULTS
print ' speed = %.1f knots'%(Um)
#initialisation of variables
import math
r= 1./64
t= 75. #sec
#CALCULATIONS
R= math.sqrt((1./r))
tfs= R*t/60.
#RESULTS
print 'time = %.f min'%(tfs)
#initialisation of variables
import math
g= 32.2 #ft/sec**2
#CALCULATIONS
C = 15.*0.305*(12)**(5./2)/(8.*8.05*60)
#RESULTS
print 'numerical value of proportional constant = %.2f '%(C)
#initialisation of variables
import math
A= 9. #ft**2
A1= 50000. #yd**2
l= 12. #ft
H1= 2. #ft
H2= 3. #in
g= 32.2 #ft**2/sec
#CALCULATIONS
t= round((A*A1*2./(0.4*math.sqrt(2.*g)*l))*((H2/12.)**-0.5-(H1)**-0.5),-2)
#RESULTS
print ' time required = %.f sec '%(t)
#initialisation of variables
import math
A= 5. #ft**2
c= 0.6
g= 32.2 #ft/sec**2
H= 6. #in
#CALCULATIONS
Q= 0.6*(8./15)*60*math.sqrt(2*g)*(H/12)**2.5
u= 0.455/A
h= u**2./(2*g)
#RESULTS
print ' Discharge= %.1f ft**3/sec'%(Q)
print ' mean approach velocity = %.3f ft/sec'%(u)
print ' kinetic head = %.6f ft'%(h)