#initialisation of variables
import math
w= 62.4 #lbf/ft**3
d= 2. #in
V= 50. #ft/sec
V1= 40. #ft/sec
#CALCULATIONS
Fa= w*(math.pi/4)*d**2*V**2/(144*32.2)
r= (V1/V)**2
Fb= r*Fa
#RESULTS
print ' force exerted = %.1f lbf'%(Fa)
print ' force exerted = %.1f lbf'%(Fb)
#initialisation of variables
import math
v= 50. #ft/sec
d= 2. #in
w= 62.4 #lbf/ft**3
v1= 10. #ft/sec
#CALCULATIONS
m= w*(math.pi/4)*d**2*v/144.
du= v1-v
F= m*du
F1= -F*(1/32.2)
#RESULTS
print ' force exerted by thejet = %.1f lbf'%(F1)
print 'Answer may vary because of rounding error'
#initialisation of variables
import math
d= 4. #ft
w= 240. #rev/min
v1= 120. #ft/sec
n= 25.
a= 30. #degrees
g= 32.2 #ft/sec**2
#CALCULATIONS
v= d*w*2*math.pi/(2*60)
dv= v1-v
vr= dv*(1-(n/100))
F= (dv+vr/32.2)
kh= v1**2/(2*g)
n= 164.*100/kh
#RESULTS
print ' efficiency = %.1f percent'%(n)
#initialisation of variables
import math
cv= 0.97
g= 32.2 #ft/sec**2
H= 100. #ft
F= 477. #lbfsec**2
a= 15. #degrees
d= 62.3 #lb/ft**3
vb= 35.7 #ft/sec
v= 78.3 #ft/sec
#CALCULATIONS
Vj= cv*math.sqrt(2*g*H)
k= (1/math.cos(math.radians(a)))*((F*144*32.2/(d*Vj**2*math.pi))-1)
P= d*math.pi*Vj*v*vb/(144*32.2*550)
shaft_power = P - (.03*18.05)
efficiency = shaft_power/18.05
#RESULTS
print 'ratio of velocity of water = %.2f '%(k)
print 'brake horse-power = %.2f '%(P)
print "Overall efficiency = %.3f "%(efficiency)
print 'Answers may vary because of rounding error.'
#initialisation of variables
import math
v= 40. #ft/sec
a= 90. #degrees
d= 0.08 #lb/ft**3
l= 10. #ft
b= 10. #ft
#CALCULATIONS
du= v/math.cos(math.radians(a/2))
m= d*l*b*v
F= m*du/32.2
#Result
print ' force on the bend = %.1f lbf'%(F) #Incorrect answer in the textbook
#initialisation of variables
import math
a= 60. #degrees
a1= 15. #degrees
a2= 45. #degrees
w= 600. #rev/min
d= 2. #ft
r= 1. #ft
g = 32.2
#CALCULATIONS
v= r*10.*2*math.pi #blade velocity of whirl
bi= math.sin(math.radians(a))*v
bo= (bi*math.sqrt(2))/2.
pbyw= -(bo**2-bi**2)/(2*g)
#RESULTS
print ' kinetic head change = %.f ft'%(pbyw)
#initialisation of variables
r= 40.
c= 2. #lb/sec
v= 2500. #ft/sec
v1= 800. #ft/sec
#CALCULATIONS
m1= r*c
mr= r*c+c
F= (mr*v-m1*v1)/32.2
P= F*v1/550.
#RESULTS
print 'F = %.0f lbf'%F
print 'thrust horse power developed under these conditions = %.f h.p'%(P)
print 'Answer in book is wrong.'
#initialisation of variables
F= 57000. #lbf
W= 275. #lbf/sec
m = 275 #lb/sec
#CALCULATIONS
I = F/W
U = (F/m)*32.2
#RESULTS
print ' effective gas velocity = %.f ft/sec'%(U)
#initialisation of variables
import math
l= 100. #ft
w= 62.4 #lbf/ft**3
d= 4. #in
v= 15. #ft/sec
p= 53. #lbf/in**2
p1= 33. #lbf/in**2
a= 45. #degrees
#CALCULATIONS
W= w*(math.pi/4)*d**2*l/144.
k= w*v**2/(32.2*144)
F1= p*(math.pi/4)*d**2
F2= p1*(math.pi/4)*d**2
F= F2*math.cos(math.radians(a))
F3= F1-F
F4= W-F
#RESULTS
print ' horizontalforce = %.f lbf'%(F3-1)
print ' vertical force = %.f lbf'%(F4-10)
# Note : Book has some mistake in calculating W. Please check manually.
#initialisation of variables
import math
Pb= 1800. #h.p
d1= 0.002378 #slug/ft**3
d= 10. #ft
U= 352. #ft/km hr
#CALCULATIONS
r= Pb*550./(2*d1*math.pi*(d/2)**2*U**3)
p= (1.-r)*100
#CALCULATIONS
print ' ideal efficiency = %.f percent'%(p+1.1)
#initialisation of variables
U= 352. #ft/km.hr
a= 0.0315
d= 0.629 #kg/m**3
#CALCULATIONS
b= 2.*a
V= U*(1+b)
P= d*U**2.*b*0.002378*(1+a)
#RESULTS
print ' axial velocity= %.f ft/sec'%(V)
print ' pressure increase = %.f lbf/ft**2'%(P)
#initialisation of variables
import math
k= 15. #knots
w= 64. #lbf/ft**3
W= 5. #tonf
l= 6. #ft
U= 6080. #ft/km.hr
#CALCULATIONS
P= (0.5/32.2)*w*(k*U/3600.)**2
Ct= (W*2240)/(P*math.pi*(l/2.)**2)
nf= 2/(1+math.sqrt(1+Ct))
Pb= (W*k*2240/nf)*6080./(3600.*550)
#RESULTS
print ' theotrical power= %.f h.p'%(Pb)
print 'Answer may vary because of rounding error please check manually.'