#initialisation of variables
v= 5.*10**-6 #gmsec/m**2
g= 32.2 #ft/sec**2
g1= 981. #gm/cm**2
#CALCULATIONS
v1= v*2.2*30.5**2/1000.
v2= v1*g
v3= v*g1*100
#RESULTS
print 'viscosity = %.2e lbf sec/ft**2 '%(v1)
print 'viscosity = %.2e lb/ft sec '%(v2)
print 'viscosity = %.3f centi-poise '%(v3)
#initialisation of variables
v= 3.732*10**-7 #slug/ft sec
y= 0.
#CALCULATIONS
vbyy= 40000.*(1.-50*y)
q= v*vbyy
#RESULTS
print ' viscous shear stress= %.4f lbf/ft**2 '%(q)
#initialisation of variables
import math
T= 2.95 #lbf ft
y= 0.025 #in
d= 3. #in
w= 450. #r.p.m
g= 32.2 #ft/sec**2
R = 1.5
#CALCULATIONS
A = math.pi*d*(2./3.)
u = (T*y*144*60*32.2)/(A*R**2*w*2*math.pi)
#RESULTS
print ' coefficient of viscocity of oil= %.3f lb/ft sec '%(u)
#initialisation of variables
import math
v= 0.02 #lb/ft sec
L= 5. #in
D= 2.5 #in
M= 26. #lbf in
w= 1200. #rev/min
g= 32.2 #ft/sec**2
#CALCULATIONS
C= math.pi*v*w*2*math.pi*D**3*L/(2*M*g*60*144.)
#RESULTS
print ' coefficient= %.4f in '%(C)
#initialisation of variables
import math
g= 32.2 #ft/sec**2
l= 2.54 #cm
g= 32.2 #ft/sec**2
v= 3.22 #centi-poise
f= 0.01
p= 1.74 #lbf/in**2
w= 100. #rev
#CALCULATIONS
V= v*l/(453.6*g*12)
R= f*p*60/(math.pi*2*math.pi*w*V)
#RESULTS
print ' relevant ratio of diameter to clearance= %.1f '%(R)
#initialisation of variables
g= 981. #cm/sec**2
d= 0.1 #mm
v= 35. #centi-stokes
d1= 10. #mm
d2= 1. #mm
#CALCULATIONS
u= g*d**2.*100/(18*v*d1**2)
ub= (d2/d)**2*u
#RESULTS
print ' rate for diameter 0.1 mm= %.4f cm/sec'%(u)
print ' rate for diameter 1 mm= %.2f cm/sec'%(ub)
#initialisation of variables
import math
a= 0.25 #ft
v= 1.2 #poises
u= 10. #ft/sec
g= 32.2 #ft/sec**2
s= 0.9
d= 6. #in
#CALCULATIONS
q= -2.*u*v*30.5/(a*454*g)
Q= math.pi*u*(d/24)**2/2
R= 2.5*30.5**2/(v)
#RESULTS
print ' quantity flow = %.2f ft**3/sec'%(q)
print ' shear stress in the oil = %.2f lbf/ft**2'%(Q)
print ' Reynolds number = %.f '%(R)
print 'Which is less than 2300 .Hence flow is laminar.'
# Note : Answer in book is wrong for R. Please check it manually.
#initialisation of variables
import math
s= 0.9 #relative density
v= 5. #ft/sec
l= 10. #ft
di= 0.5 #in
n= 100.
u= 0.002 #lbfsec/ft**2
w= 62.3 #lbf/ft**3
g= 32.2 #ft/sec**2
#CALCULATIONS
dp= 8.*u*v*l/(di/2)**2
hf= dp*144./(s*w)
hk= v**2/(2.*g)
ht=hf+hk
P= s*w*n*v*math.pi*ht*di**2/(144.*4*550)
#RESULTS
print ' horse-power required = %.1f h.p'%(P)
#initialisation of variables
import math
W= 50. #tonf
u= 0.1 #lb/ft sec
d= 8. #in
g= 32.2 #ft/sec**2
r= 0.01
#CALCULATIONS
P = (4*W**2)/(3*math.pi*u) * ((1./800)**3)*(12./8)*(g/550)*2240**2
Q= 4*W*2240*g*12*(r/d)**3/(3*math.pi*u*(d/12))
#RESULTS
print ' power required = %.2f'%P
print ' rate = %.3f in/sec'%(Q)