Chapter 03:Torsion

Example 3.3.1, Page No:79

In [9]:
import math

#Variable Decleration
P=20*10**3 #Power in W
f=2 #Frequency in Hz
t_max=40*10**6 #Maximum shear stress in Pa
G=83*10**9 #Bulk modulus in Pa
theta=(6*pi)/180 #Angle of twist in radians
L=3 #Length in m

#Calculations
#Strength condition
T=P/(2*pi*f) #Torque in N.m
d1=((16*T)/(pi*t_max))**0.333 #Max allowable diameter in mm

#Applying torque-twist relationship
d2=((32*T*L)/(G*theta*pi))**0.25 #Diameter in mm

d=max(d1,d2)

print "To satisfy both strength and rigidity conditions d=",round(d*1000,1),"mm"

#NOTE:The fractional power leads to the discrepancy in the answer
To satisfy both strength and rigidity conditions d= 58.9 mm

Example 3.3.2, Page No:79

In [14]:
import math

#Variable Decleration
Ga=4*10**6 #Bulk modulus of Aluminium in psi
Gs=12*10**6 #Bulk Modulus of Steel in psi
T=10**4 #Torque in lb.in
L1=3 #Length in ft of the Steel bar
L2=6 #Length in ft of the Aluminium bar
d1=3 #Diameter of the Aluminium bar in inches
d2=2 #Diameter of the Steel bar in inches

#Calculations
#Using Compatibility and equlibrium conditions
a=np.array([[1,1],[(L1*32)/(Gs*pi*d2**4),-((L2*32)/(Ga*d1**4*pi))]])
b=np.array([T,0])
y=np.linalg.solve(a,b)

#Stresses
t_max_st=(16*y[0])/(pi*d2**3) #Max shear Stress in Steel in psi
t_max_al=(16*y[1])/(pi*d1**3) #Max shear stress in aluminium in psi

print "The maximum values of Shear Stresses are as flollows"
print round(t_max_st),"psi in Steel and ",round(t_max_al),"psi in Aluminium"
#NOTE:The shear stress for steel in the txtbook is off by 3psi
The maximum values of Shear Stresses are as flollows
3453.0 psi in Steel and  863.0 psi in Aluminium

Example 3.3.3, Page No:80

In [16]:
import math

#Variable Decleration
d=2 #Diameter in ft
G=12*10**6 #Bulk Modulus in psi
#Torque in lb.ft
T1=500 #Torque 1 
T2=900 #Torque 2
T3=1000 #Torque 3
#Length in ft
L1=4 
L2=3
L3=5

#Calculations
#Applying the sum of torques we get
Tab=T1 #Torque at section AB in lb.ft
Tbc=-T2+T1 #Torque at section BC in lb.ft
Tcd=T3-T2+T1 #Torque at Section CD in lb.ft

#Summing the angle of twists
theta_r=(((Tab*12*L3*12)+(Tbc*12*L2*12)+(Tcd*12*L1*12))*32)/(pi*2**4*G)
theta=(theta_r*180)/pi #Angle in degrees

print "The angle of twist is",round(theta,3),"degrees"
The angle of twist is 1.62 degrees

Example 3.3.4, Page No:81

In [7]:
import math

#Variable Decleration
L=1.5 #Length of the shaft in m
t_B=200 #Torque per unit length in N.m/m
d=0.025 #Diameter of the shaft in m
G=80*10**9 #Bulk Modulus for steel in Pa


#Calculations
#Part(1)
#After carrying out the variable integration
T_A=0.5*t_B*L #Torque about point A in N.m
#Using equation of max stress
tau_Max=(16*T_A)*(pi*d**3)**-1 #Maximum stress in the shaft in Pa

#Part(2)
J=(pi*d**4)*32**-1 #Polar moment of inertia in m^4
#After carrying out the computation for angle of twist we get
theta_r=(t_B*L**2)*(3*G*J)**-1 #Angle of twist in radians
theta=theta_r*(180*pi**-1) #Angle of twist in degrees

#Result
print "Result for part (1)"
print "Maximum Shear Stress in the shaft is",round(tau_Max/10**6,1),"MPa"
print "Result for part (2)"
print "The angle of twist in the shaft is",round(theta,2),"degrees"
Result for part (1)
Maximum Shear Stress in the shaft is 48.9 MPa
Result for part (2)
The angle of twist in the shaft is 2.8 degrees

Example 3.3.5, Page No:91

In [17]:
import math

#Variable Decleration
L=6 #Length of the tube in ft
t=3*8**-1 #Constant wall thickness in inches
G=12*10**6 #Bulk modulus of the tube in psi
w1=6 #Width on the top in inches
w2=4 #Width at the bottom in inches
h=5 #Height in inches
theta=0.5 #Angle of twist in radians

#Calculations
#Part(1)
Ao=(w1+w2)*2**-1*h #Area enclosed by the median line in sq.in
S=w1+w2+2*(sqrt(1**2+h**2)) #Length of the median line in inches
#Using the torsional stifness formula we get
k=4*G*Ao**2*t*(L*12*S)**-1*(pi*180**-1) #tortional Stiffness  in lb.in/rad

#Part(2)
T=k*theta #Torque required to produce an angle of twist of theta in lb.in
q=T*(2*Ao)**-1 #Shear flow in lb/in
tau=q/t #Shear stress in the wall in psi


#Result 
print "Part(1) results"
print "Torsional stiffness is",round(k),"lb.in/deg"
print "Part(2) results"
print "The shear stress in the wall is", round(tau),"psi"
Part(1) results
Torsional stiffness is 135017.0 lb.in/deg
Part(2) results
The shear stress in the wall is 3600.0 psi

Example 3.3.6, Page No:92

In [21]:
import math

#Variable Decleration
L=1.2 #Length of the tube in m
tau=40*10**6 #MAximum shear stress  in MPa
t=0.002 #Thickness in m
r=0.025 #Radius of the semicircle in m
G=28*10**9 #Bulk Modulus in Pa
t1=2 #Thickness in mm
t2=3 #thickness in mm

#Calculations
#Part(1)
q=tau*t #Shear flow causing the stress in N/m
Ao=pi*r**2*0.5 #Area of the semi-circle in m^2
T=2*Ao*q #Torque causing the shear stress in N.m

#Part(2)
#After computing the median lines integration we get
S=(pi*25*t1**-1)+(2*25*t2**-1) #Length of median line 
theta_r=T*L*S*(4*G*Ao**2)**-1 #Angle of twist in radians
theta=theta_r*(180*pi**-1) #Angle of twist in degrees

#Result
print "Result for part(1)"
print "The torque causing the stress of 40MPa is",round(T,2),"N.m"
print "Result for part (2)"
print "The angle of twist is",round(theta,1),"degrees"
Result for part(1)
The torque causing the stress of 40MPa is 157.08 N.m
Result for part (2)
The angle of twist is 5.6 degrees