import math
# Variable Declaration
# µr1 = 3; # relative permeability of region 1
# µr2 = 5; # relative permeability of region 2
# H1 = (4ax + 3ay -6az)A/m; Magnetic field intensity
# Therefore B1 = µoµr1H1
# = µo(12ax + 9ay -18az)A/m
# since normal component of (B) is continuous across the interface
# Therefore, B2 = µo[12ax + 9(µr2/µr1)ay -18(µr2/µr1)az]
# = µo[12ax + 15ay - 30az]
# H2 = [12/5ax + 15/5ay - 30/5az]A/m
# H2 = (2.4ax + 3ay - 6az)
H2 = math.sqrt((2.4**2) + (3**2) + (6**2));
# output
print'Magnetic field intensity in region- 2 = %3.3f A/m'%H2;
import math
# Variable Declaration
# D = 3*10**-7 sin(6*10**7 - 0.35x)az
er = 100; # relative permitivity
# Calculations
# ∂D/∂t = 3*10**-7 * 6*10**7* cos(6*10**7 - 0.35x)az
A = 3*10**-7 * 6*10**7
#output
print'Amplitude of displacement current density = %d A/m**2'%A;
import math;
# Variable Declaration
#E = 20π e**j(wt - βz)ax
#H = Hm e**j(wt + βz)ay
lamda = 1.8; # wavelength in m
c = 3*10**8; # vel. in m/s
er = 49; # relative permitivity
ur = 1; # relative permeability
Em = 20*math.pi # from the given expression
# Calculations
v = c/float(math.sqrt(er)); # velocity of propagation of wave in medium with er rel.permitivity
w = (2*math.pi*v)/float(lamda);
# let k = E/H
k = (120*math.pi)*math.sqrt(ur/float(er));
Hm = Em/float(k);
# sign of Hm can be determined by evaluating the maxwells eqn
# V*E = ∂B/∂x
# V*E = -j20π e**j(wt - βz)ay ---------------- 1
# -∂B/∂x = -juow Hm e**j(wt + βz)ay ---------------- 2
# comparing 1 and 2 singn of Hm must be positive
# Output
print'w = %3.1e rad/s\n'%w;
print'Hm = %3.2f A/m'%Hm;
import math
# given data
f = 1000; # frequency in Hz
sigma = 5*10**7; # conductivity in mho/m
er = 1; # relative permitivity
eo = 8.85*10**-12; # permitivity
#J = 10**8sin(wt-444z)ax A/float(m**2)
# Calculations
w = 2*math.pi*f
# J = σE
# E = 10^8sin(wt-444z)ax/sigma
# E = 0.2sin(6280t-444z)ax
# D = eoerE
# D = 8.85*10**-12*0.2sin(6280t-444z)ax
# ∂D/∂t = 1.77*1088-12*6280cos(6280t - 444z)ax
A = 1.77*10**-12*6280
#output
print'Amplitude of displacement current density = %3.2e A/m^2'%A;
print'\nNote: calculation mistake in textbook';