#given
L=73.75*10**-9 #inductance, H
C=29.5*10**-12 #capacitance
x=5280
#calculation
import math
Z=math.sqrt(L/C)
z1=math.sqrt((x*L)/(x*C))
#result
print"characterstics impedence for 1-ft =",Z,"ohm"
print"characterstics impedence for 1-mi = ",z1,"ohm"
#given
a=2 #parallel wire line
b=2.35 #coaxial line
D=0.285
d=0.08
e=1.0 #dielectric constant of insulating material relative to air
#calculation
import math
z=(276/e)*math.log10(2*2)
z1=(138/e)*math.log10(b)
z2=(138/math.sqrt(2.3)*math.log10(D/d))
#result
print"(a) characterstics impedence for a parallel wire = ",round(z,0),"ohm"
print"(b) characterstics impedence for a air dielectric coaxial line= ",round(z1,1),"ohm"
print"(c) characterstics impedence = ",round(z2,0),"ohm"
#given
L=73.75*10**-9 #inductance, H
C=29.5*10**-12 #capacitance
d=1 #distance
#calculation
import math
t=math.sqrt(L*C)
Vp=d/t
#result
print"the delay introduced is t =",round(t,10),"s"
print"The velocity of propagation is ",round(Vp*10**-8,3),"*10**8 ft/s"
#given
v=2.07*10**8 #velocity
c=3.0*10**8 #velocity of light
Er=2.3 #relative dielectric constant
#calculation
import math
vf=(v/c) #velocity factor
vf1=1/math.sqrt(Er)
#result
print"The velocity = ",vf,"m/s"
print"vf = ",round(vf1,3)
#given
c=3*10**8 #speed of light
f=100.0*10**6 #frequency of signal
x=2.07*10**8 #velocity of wave propagation
#Calcultion
w=c/f #wavelength in free-space
w1=x/f #wavelength while traveling through an RG-8A/U coaxial cable
#Result
print"In free space, lambda =",w,"m"
print"While traveling through RG-8A/U cable, lamda= ",w1,"m"
#Given
Zl=300.0 #load impedance
Zo=50.0 #characteristic impedance
v=2.07*10**8 #velocity in RG-8A/U cable
f=27.0*10**6 #operating frequency of citizen's band transmitter
Po=4 #output power of transmitter
l=10 #length of RG-8A/U cable
Rl=300 #input resistance of antenna
#calculation
T=((Zl-Zo)/(Zl+Zo)) #reflection coefficient
h=v/f #length of cable in wavelength
le=l/h #electrical length
x=Rl/Zo #VSWR
y=((1+T)/(1-T)) #VSWR
rp=(T)**2*Po #reflected power
Pl=Po-rp #load power
#part(a): The reflection coefficient
#result
print"(a) reflection cofficient = ",round(T,2)
print"(b) electrical length =",round(le,2),"lambda"
print"(c) VSWR = ",y
print"(d) the reflected voltage = ",round(Pl,2),"W"
#given
Zo=100.0 #characteristic impedance
j=1j
Zl = 200-j*150 #load impedance
l=4.3 #length of transmission line
#calculation
x=200/Zo
y=150/Zo
a=0.4*Zo
b=0.57*Zo
#result
print"Zin = ",a,"Ohm","+j*",b,"Ohm"
#given
import cmath
j=1j
RL=120 #load resistance from smith chart
ZL=complex(75,50) #load impedance
Z0=50.0 #characteristic impedance
#calculation
import math
z1=ZL/Z0
z=2.4 #normalized z at a point that is purely resistive
ar=z*Z0 #actual resistance
x=math.sqrt(Z0*RL)
#Result
print"zl= ",z1
#VSWR,zin,R can be found out from smith chart manually
print"characteristic impedance is =",round(x,2),"ohm"
#given
import cmath
Z0=75.0 #characteristic impedance
j=1j
ZL=complex(50,-100) #load impedance
#Calculation
zL=ZL/Z0
#Result
print"zL =",zL