#initiation of variable
Z=2;A=4;N=A-Z; # Given values
#result
print"The following method of representing atoms is followed throughout the chapter\n\t\t x,y,z\n where x=atomic number y=mass number z= Neutron Number S=symbol of the atom\n\n"
print"The helium can be reperesented as He-- ",Z,A,N;
#part b
Z=50.0;N=66.0;A=Z+N; # Given values and standard formulae
print"The Tin can be reperesented as Sn-- ",Z,A,N;
#part c
A=235;N=143;Z=A-N;
print"The Uranium can be reperesented as U-- ",Z,A,N;
#initiation of variable
r0=1.2; #standard value.
A=12.0;
r= r0*A**(1.0/3);
#result
print"The value of mean radius for C in fm is",round(r,3);
#part2
A=70.0; #given value
r= r0*A**(1.0/3);
#result
print"The value of mean radius for C in fm is",round(r,3);
#part3
A=209;
r= r0*A**(1.0/3);
#result
print"The value of mean radius for C in fm is",round(r,3);
#initiation of variable
from math import pi
m=1.67*10**-27; r0=1.2*10**-15; v=4*pi*(r0**3)/3.0 #standard values of mass radius and volume
#calculation
p=m/v; #denisty
#result
print"Density of typical nucleus in kg/m3 is %.1e" %p;
#part 2
r0=0.01;v=4*pi*(r0**3)/3.0;p=2.0*10**17; #/hypothetical values
m1=p*v;
#result
print"The mass of the hypothetical nucleus would be in Kg %.1e" %m1;
#initiation of variable
N=30.0;Z=26.0;A=56.0;Mn=1.008665;Mp=1.007825;m=55.934939;c2=931.5; #given values and constants for case-1
B=((N*Mn)+(Z*Mp)-(m))*c2; #binding energy(per nucleon)
#result
print"Binding nergy per nucleon for 26,56Fe30 in MeV is",round(B/A,3);
#part 2
N=146.0;Z=92.0;A=238.0;Mn=1.008665;Mp=1.007825;m=238.050785;c2=931.5; #given values and constants for case-2
B=((N*Mn)+(Z*Mp)-(m))*c2; #binding energy(per nucleon)
#result
print"Binding nergy per nucleon for 26,56Fe30 in MeV is",round(B/A,3);
#initiation of variable
from math import exp
t12=2.7*24*3600; #converting days into seconds
w=0.693/t12; #lambeda
#result
print"The decay constant in sec is %.2e" %w;
#partb
print"The decay constant is equal to probability of decay in one second hence %.2e" %w;
#partc
m=10**-6;Na=6.023*10**23; M=198.0; #given values and constants
N=m*Na/M; #number of atoms in the sample
Ao=w*N; #activity
#result
print"The activity was found out to be in Ci is %.2e" %Ao;
#partd
t=7*24*3600.0; #given time
A=Ao*exp(-w*t); #activity
#result
print"The activity after one week was found out to be in decays/sec %.1e" %A;
#initiation of variable
t1=4.55*10**9;t2=7.04*10**8; #given values of time at 2 different instants
#calculation
age=t1/t2;
r=2**age;
#result
print "The original rock hence contained",round(r,3),"Na atoms of 235U where Na is the Avagadro''s Number=6.023*10^23";
#initiation of variable
m236Ra=226.025403;
m222Rn=222.017571;
m4He=4.002603;c2=931.5; #mass of various elements and c2=c^2
#calculation
Q=(m236Ra-m222Rn-m4He)*c2;#Q of the reaction
A=226.0
K=((A-4)/A)*Q; #kinetic energy
#result
print"The kinetic energy of the alpha particle in Mev is",round(K,3);
#initiation of variable
m226Ra=226.025403; #mass of various elements
m212Pb=211.991871;
m14c=14.003242;
c2=931.5; #value of c^2
#calculation
Q=(m226Ra-m212Pb-m14c)*c2; #Q of the reaction
#result
print"The value of Q for 14c emission in MeV is",round(Q,3);
print"The probability of 14c emission is 10^-9 times that of an alpha particle since the energy barrier for 14c emission is nearly 3 times higher and thicker."
#initiation of variable
m23Ne=22.994465; #mass of various elements
m23Na=22.989768;
c2=931.5; #value of c^2
#calculation
Q=(m23Ne-m23Na)*c2; #Q of the reaction
#result
print "Hence the maximum kinetic energy of the emitted electrons in MeV is",round(Q,3);
#initiation of variable
m40K=39.963999; #mass of various particles
m40Ca=39.962591;
c2=931.5; #value of c^2 in MeV
#calculation
Qb1=(m40K-m40Ca)*c2; #Q value of the reaction
#result
print"The Q value for -VE beta emission in Mev in",round(Qb1,3);
#partb
m40K=39.963999; #mass of various particles
m40Ar=39.962384;
me=0.000549;
Qb2=(m40K-m40Ar-2*me)*c2; #Q value of the reaction
#result
print"The Q value for +VE beta emission in Mev in",round(Qb2,3);
#partc
m40K=39.963999;
m40Ar=39.962384;
#calculation
Qec=(m40K-m40Ar)*c2;
#result
print"The Q value for +VE beta emission in Mev in",round(Qec,3);
#initiation of variable
Mg=12.000000; #mass of the carbon atom in amu
c2=931.5;
Eg=4.43; #given energy of gamma ray
Mex=Mg+(Eg/c2); #mass in excited state
Me=0.000549; #mass of an electron
#calculation
Q=(12.018613-Mex-2*Me)*c2; #Q of the particle
#result
print"The maximum value of kinetic energy is in MeV",round(Q,3);
#initiation of variable
m238U=238.050786; #mass of various quantities
m206Pb=205.974455;
m4He=4.002603;
c2=931.5; #constants
Na=6.023*10**23; #avagadro's number
#calculation
Q=(m238U-m206Pb-8*m4He)*c2;
t12=(4.5)*10**9*(3.16*10**7); #half life years to seconds conversion
w=0.693/t12; # lambeda
NoD=(Na/238)*w; #number of decays
E=NoD*Q*(1.6*10**-19)*10**6; #rate of liberation of energy,converting MeV to eV
#result
print"Rate of energy liberation in W is %.2e" %E;
#initiation of variable
from math import log
R=0.5;t12=4.5*10**9; #value of radius and half-life
t1=(t12/0.693)*log(1+(1/R)); #age of rock 1
R=1.0;
t2=(t12/0.693)*log(1+(1/R)); #age of rock-2
R=2.0
t3=(t12/0.693)*log(1+(1/R)); #age of rock 3
#result
print"The ages of rock samples in years respectively are %.1e"%t1," %.1e" %t2," %.1e" %t3;
#initiation of variable
from math import log
P=2.0*10**14; V=2.0*10**-14; R=8.314; T=295.0;Na=6.023*10**23; #varoius constants and given values
#calculation
n=P*V/(R*T); #ideal gas law
N=Na*n;f=10**-12 #avagadaro's number and fracction of carbon molecules
t12=5730*3.16*(10**7); #half life
A=(0.693/t12)*N*f; #activity
D1w=A*7*24*60*60; #decays per second
#result
print"the no. of decays per second is %.2e" %A
print"The no of decays pers week is ",round(D1w);
#partb
c1=1420.0; #concentration at instant 1
c2=D1w; #concentration at instant 2
t12y=5730; #half life
t=t12y*log(c2/c1)/0.693; #age of the sample
#result
print"Age of the sample in years is",round(t,3);
print"the answer in the book is wrong"