The General Theory of Relativity

Example 15.1 Page 491

In [2]:
#initiation of variable
w=121.5;   #lambeda
G=6.67*10**-11; #Various given values and constants
M= 1.99*10**30; 
R= 6.96*10**8;
c=3*10**8;

#calculation
k= G*M/(R*c**2);    #(delLambeda)/(lambeda)
delw=k*w;           #del(lambeda)

#result
print "The change in wavelength due to gravitational shift in pm is",round(delw*10**3,3);

#part3
k=5.5*10**-5;#due to thermal Doppler broadening effect
delw=k*w;

#result
print "The change in wavelength due to thermal Doppler broadening effect in pm is",round(delw*10**3,3);
 The change in wavelength due to gravitational shift in pm is 0.257
The change in wavelength due to thermal Doppler broadening effect in pm is 6.683

Example 15.2 Page 501

In [3]:
#initiation of variable
mp=938.280;   #mass of various particles
me=0.511;
m2h=1875.628;

#calculation
mic2=2*mp;           #mass energy on L.H.S
mfc2=m2h+me;  #mass energy on R.H.S
Q=mic2-mfc2;    #Q value of reation
pc=Q;
mc2=1875.628;
K=(pc**2)/(2*mc2);     #kinetic threshold energy
Emax=Q-K;        #maximum energy 

#result
print "The maximum neutrino energy in MeV is",round(Emax,3);
The maximum neutrino energy in MeV is 0.421