#initiation of variable
E=-2.7;
K=9.0*(10**9)*((1.6*(10**-19))**2)/(0.106*10**-9);# taking all the values in meters. 1/(4*pi*e0)= 9*10^9 F/m
#calculation
q=((K-E*10**-9)/(4*K))*10**-9; #balancin by multiplying 10^-9 on numerator. to eV.vm terms
#result
print"Charge on the sphere required is",round(q,4)," times the charge of electron.";
#initiation of variable
K=1.44; Req=0.236; # K=e^2/(4*pi*e0)=1.44 eV.nm
#calculation
Uc=-K/(Req); #coulomb energy
#result
print"The coulomb energy at an equilirium separation distance in eV is",round(Uc,3);
E=-4.26; delE=1.53; #various standars values of NaCl
Ur=E-Uc-delE;
#result
print"The pauli''s repulsion energy in eV is",round(Ur,3);
#partb
Req=0.1; #pauli repulsion energy
Uc=-K/(Req);
E=4; delE=1.53;
Ur=E-Uc-delE;
#result
print"The pauli''s repulsion energy in eV is",round(Ur,3);
#initiation of variable
from math import pi, sqrt
delE=0.50; delR=0.017*10**-9; #delE= E-Emin; delR=R-Rmin;
k=2*(delE)/(delR**2);c=3*10**8; #force constant
m=(1.008)*(931.5*10**6)*0.5; #mass of molecular hydrogen
v= sqrt(k*c**2/m)/(2*pi); #vibrational frequency
h=4.14*(10**-15);
#calculation
E=h*v;
#result
print"The value of corresponding photon energy in eV is",round(E,3);
#initiation of variable
from math import pi, sqrt
hc=1240.0; #in eV.nm
m=0.5*1.008*931.5*10**6; #mass of hydrogen atom
Req=0.074; #equivalent radius
#calculation
a=((hc)**2)/(4*(pi**2)*m*(Req**2)); #reduced mass of hydrogen atom
for L in range(1,4):
delE= L*a;
print"The value of energy in eV is",round(delE,4);
w=(hc)/delE;
print"The respective wavelength in um is",round(w*10**-3,3);
#initiation of variable
from math import pi
delv=6.2*(10**11); #change in frequency
h=1.05*(10**-34); #value of h in J.sec
#calculation
I= h/(2*pi*delv); #rotational inertia
I1=I/(1.684604*10**-45); #to change units
#result
print"The value of rotational inertia in kg m2 is %.1e" %I;
print"which in terms of amu in u.nm2 is",round(I1,3);
#initiation of variable
from math import pi
delE=0.358;hc=4.14*10**-15; #hc in eV.nm and delE=1.44eV(given values)
#calculation
f=(delE)/hc; #frequency
#result
print"The frequency of the radiation is ",f;
m=0.98; #mass in terms of u
k=4*pi**2*m*f**2; #value of k in eV/m^2
#result
print"The force constant is",k;
#partb
hc=1240.0; m=0.98*1.008*931.5*10**6; Req=0.127; #various constants in terms of
s=((hc)**2)/(4*(pi**2)*m*(Req**2)); # expeted spacing
#result
print"The spacing was found out to be",round(s,3),"which is very close to the graphical value of 0.0026 eV."