#import modules
import math
from __future__ import division
#Variable declaration
E=2400; #electric field intensity(V/m)
V=90; #potential difference(V)
e=1.6*10**-19; #the charge on electron(C)
m=9.12*10**-31; #mass of electron(kg)
#Calculation
F=e*E; #force on electron(N)
a=F/m; #acceleration(m/s^2)
KE=e*V; #Kinetic Energy of particle(J)
v=math.sqrt(2*KE/m); #velocity of the electron(m/s)
v=v*10**-6;
v=math.ceil(v*10**2)/10**2; #rounding off to 2 decimals
#Result
print "The force on electron is",F,"N"
print "Its acceleration is",round(a/1e+14,2),"*10**14 m/s^2"
print "The Kinetic Energy of particle is",KE,"J"
print "The velocity of the electron",v,"*10**6 m/s"
print "answers for acceleration and velocity given in the book varies due to rounding off errors"
#import modules
import math
from __future__ import division
#Variable declaration
V=900; #potential difference(V)
B=0.01; #uniform magnetic field(Wb/m^2)
em=1.76*10**11; #value of e/m(C/kg)
#calculation
v=math.sqrt(2*em*V); #linear velocity of electron(m/s)
R=v/(em*B); #radius of the circular path(m)
R=math.ceil(R*10**3)/10**3; #rounding off to 3 decimals
v=v*10**-7;
v=math.ceil(v*10**2)/10**2; #rounding off to 2 decimals
#Result
print "The linear velocity of electron is",v,"*10**7 m/s"
print "The radius of the circular path is",R,"m"
#import modules
import math
from __future__ import division
#Variable declaration
d=6*10**-3; #distance between plates(m)
V=900; #potential difference(V)
B=0.5; #uniform magnetic field(Wb/m^2)
Q=1.6*10**-19; #the charge on electron(C)
R=10.6*10**-2; #circular track radius(m)
#calculation
v=V/(B*d); #velocity(m/s)
m=R*Q*B/v; #mass of particle(kg)
#Result
print "The mass of particle",round(m/1e-26,3),"*10**-26 kg"
#import modules
import math
from __future__ import division
#Variable declaration
V=6920; #potential difference(V)
d=1.3*10**-2; #distance between(m)
v=1.9*10**-4; #velocity(m/s)
p=0.9*10**3; #density of oil(kg/m^3)
n=1.81*10**-5; #coefficient of viscosity(N-s/m^2)
g=9.81; #accelaration due to gravity(m/s^2)
#calculation
a=math.sqrt((9*n*v)/(2*g*p)); #radius of the drop(m)
E=V/d; #electric field(V/m)
Q=4*math.pi*(a**3)*p*g/(3*E); #value of charge on oil drop(C)
#Result
print "The radius of the drop is",round(a/1e-6,2),"micro m"
print "The value of charge on oil drop is",round(Q/1e-19,3),"*10^-19 C"
print "answers given in the book are wrong"