#import modules
import math
from __future__ import division
#Variable declaration
Z=79; #atomic number of gold
e=1.6*10**-19; #electron charge(C)
Eo=8.854*10**-12; #absolute permitivity of free space(F/m)
K=7.68*1.6*10**-13; #kinectic energy(J)
#calculation
D=(2*Z*e**2)/(4*math.pi*Eo*K); #closest distance of approach(m)
#Result
print "The closest distance of approach is",round(D/1e-14,2),"*10**-14 m"
#import modules
import math
from __future__ import division
#Variable declaration
Z=1; #atomic number of hydrogen
e=1.6*10**-19; #electron charge(C)
h=6.625*10**-34; #plank's constant(J-s)
m=9.1*10**-31; #mass of an electron(kg)
Eo=8.854*10**-12; #absolute permitivity of free space(F/m)
c=3*10**8; #speed of light(m/s)
n=1; #ground state
#calculation
v=9*10**9*(2*math.pi*Z*e**2)/(n*h); #velocity of ground state(m/s)
r=(Eo*n**2*h**2)/(math.pi*m*e**2); #radius of Bohr orbit in ground state(m)
t=(2*math.pi*r)/v; #time taken by electron to traverse the bohr first orbit(s)
R=(m*(e**4))/(8*(Eo**2)*(h**3)*c); #Rhydberg contstant(m^-1)
#v=v*10**-5;
#v=math.ceil(v*10**3)/10**3; #rounding off to 3 decimals
#r=r*10**10;
#R=R/10**6;
#Result
print "velocity of ground state",round(v/1e+5,2),"*10^5 m/s"
print "radius of Bohr orbit in ground state",round(r/1e-10,2),"*10^-10 m"
print "time taken by electron to traverse the bohr first orbit",round(t/1e-16,2),"micro s"
print "Rhydberg constant is",round(R/1e+6,3),"*10**6 m^-1"
print "answer for Rhydberg contstant given in the book differs in the 2nd decimal point"
#import modules
import math
from __future__ import division
#Variable declaration
B=2.179*10**-16; #constant(J)
h=6.6*10**-34; #plank's constant(J-s)
#calculation
E3=-B/3**2; #energy in 3rd orbit(J)
E2=-B/2**2; #energy in 2nd orbit(J)
f=(E3-E2)/h; #frequency of radiation(Hz)
#Result
print "frequency of radiation",round(f/1e+16,1),"*10**16 Hz"
#import modules
import math
from __future__ import division
#Variable declaration
Z=1; #atomic number of hydrogen
e=1.6*10**-19; #electron charge(C)
h=6.625*10**-34; #plank's constant(J-s)
m=9.1*10**-31; #mass of an electron(kg)
Eo=8.854*10**-12; #absolute permitivity of free space(F/m)
n=1; #ground state
#Calculation
f=(m*Z**2*e**4)/(4*Eo**2*h**3); #frequency(Hz)
#Result
print "the frequency is",round(f/1e+15,2),"*10**15 Hz"
#import modules
import math
from __future__ import division
#Variable declaration
Z=1;
n=1;
e=1.6*10**-19; #the charge on electron(C)
h=6.62*10**-34; #Plank's constant
Eo=8.854*10**-12; #absolute permitivity of free space(F/m)
m=9.1*10**-31; #mass of electron(kg)
#calculation
v=Z*(e**2)/(2*Eo*n*h); #velocity(m/s)
E=-m*(Z**2)*(e**4)/(8*(Eo*n*h)**2); #energy of hydrogen atom(J)
f=m*(Z**2)*(e**4)/(4*(Eo**2)*(n*h)**3); #frequecy(Hz)
#Result
print "velocity is",round(v*10**-6,2),"*10**6 m/s"
print "energy of hydrogen atom",round(E*10**19,1),"*10**-19 J"
print "frequecy",round(f/1e+15,1),"*10**15 Hz"
print "answer for velocity given in the book is wrong"
print "answer for frequency given in the book varies due to rounding off errors"
#import modules
import math
from __future__ import division
#Variable declaration
h=6.625*10**-34; #Plank's constant
c=3*10**8; #speed of light(m/s)
E1=10.2; #energy(eV)
E2=12.09; #energy(eV)
e=1.6*10**-19; #the charge on electron(C)
#calcualtion
#principal quantum numbers are 2 & 3 respectively
lamda1=c*h/(E1*e)*10**10; #wavelength for E1(angstrom)
lamda2=c*h/(E2*e)*10**10; #wavelength for E2(angstrom)
#Result
print "wavelength for 10.2 eV is",int(lamda1),"angstrom"
print "wavelength for 12.09 eV is",int(lamda2),"angstrom"
print "answers given in the book differ due to rounding off errors"
#import modules
import math
from __future__ import division
#Variable declaration
R=10967700; #Rydberg constant(m^-1)
#calculation
long_lamda=4/(3*R); #as n1=1 and n2=2
long_lamda=long_lamda*10**10; #long wavelength(angstrom)
short_lamda=1/R; #as n1=1 and n2=infinity
short_lamda=short_lamda*10**10; #long wavelength(angstrom)
#Result
print "Long wavelength is",round(long_lamda),"angstrom"
print "Short wavelength is",round(short_lamda),"angstrom"