#importing modules
import math
from __future__ import division
#Variable declaration
h=6.626*10**-34; #planck's constant(Js)
new=100*10**6; #frequency(Hz)
P=100*10**3; #power(watt)
#Calculation
E=h*new; #quantum of energy(J)
n=P/E; #number of quanta emitted(per sec)
#Result
print "number of quanta emitted is",round(n/10**29,2),"*10**29 per sec"
#importing modules
import math
from __future__ import division
#Variable declaration
h=6.626*10**-34; #planck's constant(Js)
c=3*10**8; #velocity of light(m/sec)
lamda=400*10**-9; #wavelength(m)
e=1.6*10**-19; #conversion factor from J to eV
w0=2.28; #work function(eV)
m=9.1*10**-31; #mass of electron(kg)
#Calculation
E=h*c/(lamda*e); #energy(eV)
KEmax=E-w0; #maximum kinetic energy(eV)
v2=2*KEmax*e/m;
v=math.sqrt(v2); #velocity(m/s)
#Result
print "maximum kinetic energy is",round(KEmax,3),"eV"
print "velocity of photoelectrons is",round(v/10**5,2),"*10**5 m/s"
#importing modules
import math
from __future__ import division
#Variable declaration
h=6.626*10**-34; #planck's constant(Js)
c=3*10**8; #velocity of light(m/sec)
lamda=2000*10**-10; #wavelength(m)
e=1.6*10**-19; #conversion factor from J to eV
w0=4.2; #work function(eV)
#Calculation
lamda0=h*c/(w0*e); #cut off wavelength(m)
E=h*c/(lamda*e); #energy(eV)
sp=E-w0; #stopping potential(eV)
#Result
print "cut off wavelength is",int(lamda0*10**10),"angstrom"
print "stopping potential is",round(sp,2),"V"
#importing modules
import math
from __future__ import division
#Variable declaration
h=6.626*10**-34; #planck's constant(Js)
c=3*10**8; #velocity of light(m/sec)
lamda=0.2*10**-9; #wavelength(m)
#Calculation
p=h/lamda; #momentum(kg m/s)
m=p/c; #effective mass(kg)
#Result
print "momentum is",round(p*10**24,1),"*10**-24 kg m/s"
print "effective mass is",round(m*10**32,1),"*10**-32 kg"
#importing modules
import math
from __future__ import division
#Variable declaration
h=6.626*10**-34; #planck's constant(Js)
c=3*10**8; #velocity of light(m/sec)
lamda=0.15; #wavelength(nm)
m0=9.1*10**-31; #mass of electron(kg)
theta1=0; #scattering angle1(degrees)
theta2=90; #scattering angle2(degrees)
theta3=180; #scattering angle3(degrees)
#Calculation
theta1=theta1*math.pi/180; #scattering angle1(radian)
theta2=theta2*math.pi/180; #scattering angle2(radian)
theta3=theta3*math.pi/180; #scattering angle3(radian)
lamda_dash1=lamda+(h*(1-math.cos(theta1))/(m0*c)); #wavelength at 0(nm)
lamda_dash2=lamda+(10**9*h*(1-math.cos(theta2))/(m0*c)); #wavelength at 90(nm)
lamda_dash3=lamda+(10**9*h*(1-math.cos(theta3))/(m0*c)); #wavelength at 180(nm)
#Result
print "wavelength at 0 degrees is",lamda_dash1,"nm"
print "wavelength at 90 degrees is",round(lamda_dash2,3),"nm"
print "wavelength at 180 degrees is",round(lamda_dash3,3),"nm"
#importing modules
import math
from __future__ import division
#Variable declaration
h=6.626*10**-34; #planck's constant(Js)
c=3*10**8; #velocity of light(m/sec)
e=1.6*10**-19; #conversion factor from J to eV
E=2*0.511*10**6; #rest energy(eV)
#Calculation
lamda=h*c/(E*e); #wavelength of photon(m)
#Result
print "wavelength of photon is",round(lamda*10**12,2),"*10**-12 m"