#Given
A =0.05 #Amplitude of SHM in m
T =6.0 # period in sec
Xo=A
X =0.025
#Calculation
import math
w =2*3.14/T
ph= math.asin (Xo/A)
t=(math.asin (X/Xo)-ph)/w
t1= abs (t)
#Result
print"Timeto move from equilibrium position is",round(t1,1),"sec"
#Given
A =0.06 #Amplitude of SHM in m
T =31.4
#Calculation
w =2*3.14/T
V=A*w
#Result
print"Maximum velocity is",V,"m/s"
#Given
A=0.05 #m
T=2 #S
#Calculation
import math
x=A*math.sin(math.pi/3.0)
v=A*math.pi*math.sqrt(1-(x**2/A**2))
#Result
print"Displacement is",round(x*10**2,1),"cm"
print"Velocity is", round(v*10**2,2),"cm/s"
#Given
l =1 # length of pendulum in m
m =1 #mass of pendulum in kg
g =9.8
#Calculation
T =2*3.14* math.sqrt (l/g)
#Result
print"Period of oscillation is",round(T,1),"sec"
#Given
m1 =8 #mass suspended in kg
l =0.32
m =0.50
g =9.8
#Calculation
import math
k=m1*g/l
T=2*math.pi* math.sqrt (m/k)
#Result
print"K=",k,"N m"
print"Time period of the oscillation is",round(T,2),"sec"
#Given
K=98.0 #N/m
x=20 #cm
g=9.8 #m/sec**2
#Calculation
F=K*x/100.0
m=K*x/(100*g)
#Result
print"Restoring force is",F,"N"
print"Mass is",m,"Kg"
#Given
T=57
l=79
#Calculation
import math
g=4*math.pi**2*l*T**2/(100*100**2)
#Result
print"Value of g is", round(g,2),"m/s**2"
#Given
m=4
T=55
#Calculation
import math
K=(2*math.pi*math.sqrt(m)*55/100.0)**2
#Result
print"Stiffness factor is", round(K,2),"N/m"
#Given
K=89.2 # N/m
T=1 #S
#Calculation
import math
M=(T*math.sqrt(K)/(2*math.pi))**2
#Result
print"Mass is", round(M,2),"Kg"
#Given
m=4 #Kg
g=9.8 #m/sec**2
x=16.0
m1=0.5
#Calculation
import math
K=m*g*100/x
T=2*math.pi*math.sqrt(m1/K)
#Result
print"Time period is", round(T,2),"Sec"
#Given
T=50.0 #S
#Calculation
t=1/(2*T)
t1=1/t
t2=t1/2.0
#Result
print"Time is", t2,"Second"
#Given
a=200.0
b=2.3
#Calculation
y=b/a
D=1/y
#Result
print"(i) Damping constant is", y
print"(ii) Decay modulus is",round(D,1),"Second"
#Given
a=20 #cm
b=2.0
x=100.0
y=2.3
#Calculation
import math
w=a/b
w1=y/x
#Result
print"Logarithmic decrement of the system is", w1
#Given
n=2
m=0.3
Q=60.0
#Calculation
import math
K=16*math.pi**2*m
p=2*math.pi*n*m/Q
#Result
print"Force constant is",round(K,2),"N/m"
print"Mechanical resistance is",round(p,5),"Kg/m"
#Given
Q=10**4
b=500
#Calculation
import math
a=math.log(10)*Q/(b*math.pi)
#Result
print"Time interval is", round(a,2),"Seconds"
#Given
Q=2*10**3
v =240
#Calculation
import math
w =2*3.14*v
r= math.exp (2)
T=Q/w
t =2* T*log(r)
#Result
print"Time to become for new amplitude is",round(t,1),"sec"
#Given
A0=10.0
T=200
#Calculation
import math
y=math.log(10)/A0
t=1/(2*y)
Q=2*math.pi*t*T
t1=t*math.log(A0)
#Result
print"(i) Relaxation time is", round(t,3),"Second"
print"(ii) Quality factor is", round(Q,0)
print"(iii) Time is",t1,"Second"
#Given
E=10**3
w=256
#Calculation
import math
t=E/(2*math.pi*w)
n=E/(2*math.pi)
#Result
print"Time is", round(t,2),"Sec"
print"Number of oscillations is",round(n,0)
#Given
Ao =0.1 #amplitude at minimum frequency in mm
A =100 #maximum amplitude
w =100
#Calculation
Q=A/Ao
T=Q/w
hw =1/(2* T)
#Result
print"(a) Quality factor is",Q
print"(b) Energy decay time is",T,"sec"
print"(c) Half width of power resonance curve is",hw,"rad/sec"
#Given
m =0.1 #suspended mass in kg
k =100 #force constant in N/m
Fo =2
p =1
W =50
a=1000
a1=2500
#Calculation
import math
Wo= math.sqrt (k/m)
f=Fo/m
d=p /(2* m)
B=f/ (math.sqrt((a-a1)**2+(k*W**2)))
delta = math.atan(2*d*W/( Wo**2-W**2) )*180/3.14+180
#Result
print"Amplitude of oscillation is",round(B,4),"m"
print"Relative phase is",round(delta,1),"degree"
#Given
Q=50
a=1.4
#Calculation
B=1/a
#Result
print"Value of B/Bmax is",round(B,2)