CHAPTER01:INTRODUCTION TO ELECTRONIC CIRCUITS

Example E01 : Pg 17

In [1]:
  # CHAPTER1  EX 1-1   PG NO 17          
L=5.*10.**-3.;   # length
B=2.*10.**-2.;  # breath
A=(5.*10.**-3.)*(2.*10.**-2.);   # area
P=1.72*10.**-5. ;  # resistivity of copper
R=P*L/A;   # resistance of copper
print'i) resistance = ',round (R,5),'ohm'
R=P*L/A;              # resistance in ohm
i) resistance =  0.00086 ohm

Example E02 : Pg 18

In [2]:
                      # EXAMPLE 1-2   PG NO 18
from math import pi
R=0.69;               # RESISTANCE
P=2.83*10**-8;              # PRO
L=60.;             # LENGTH OF CABLE
a=(P*L)/R;
print'i) a = ',round (a,6),'m**2'
D=((4.*a)/pi)**0.5;               # DIAMETER
print'i) DIAMETER = ',round (D,5),'mm'
i) a =  2e-06 m**2
i) DIAMETER =  0.00177 mm

Example E03 : Pg 18

In [3]:
# EXAMPLE 1-3   PG NO-18
A20=0.00393;  # ALPHA 20
R30=1.3;  # RESITANCE 30
A30=A20/(1.+A20*(30.-20.));  # ALPHA 30
print'i)Alpha30 (A30)                  = ',round (A30,7)
T=(((1.6/1.3)-1.)/0.00378);   #  THE RISE IN TEMPERATURE TO BE FIND    where T=t-30
print'ii)Resistance Temperature (t-30) = ',round (T,2),'degree celcious'
i)Alpha30 (A30)                  =  0.0037814
ii)Resistance Temperature (t-30) =  61.05 degree celcious

Example E04 : Pg 18

In [4]:
                                   # EXAMPLE 1-4       PG NO 18-19
R1=2.22;                       # RESISTANCE
R2=0.6;                        # RESISTANCE
R3=3.;                          # Resistance
R4=4.;
R5=5.;
R6=6.;
R7=2.;
R=R1+R2+R3;
print'i) Resistance (R) is    =  ',round(R,2),'ohm'
V=12.;                              # VOLTAGE
I=V/R;                              # Current
print'ii) CURRENT (I) is      =  ',round(I,2),'A'
I3=I;                                                 # CURRENT THROUGH 3 ohm RESISTANCE
print'iii) CURRENT (I3) is    =  ',round(I3,2),'A'
I5=(I3*R4)/(R4+R5);                                      # CURRENT THROUGH 5 ohm RESISTANCE
print'iv) CURRENT (I5)  is    =  ',round(I5,2),'A'
I4=(I3*R5)/(R4+R5);                                  # CURRENT THROUGH 4 ohm RESISTANCE
print'v) CURRENT (I4)  is     =  ',round(I4,2),'A'
V1=1.236;                                    # VOLTAGE ACROSS THREE PARALLEL RESISTANCE 
I2=V1/R7;                                         # current
print'vi) CURRENT (I2)  is    =  ',round(I2,2),'A'
I1=V1;                                               # CURRENT THROUGH 1 ohm RESISTANCE
print'iv) CURRENT (I1)  is    =  ',round(I1,2),'A'
I6=V1/R6;                                            # CURRENT THROUGH 6 ohm RESISTANCE
print'vii) CURRENT (I6)  is   =  ',round(I6,2),'A'
i) Resistance (R) is    =   5.82 ohm
ii) CURRENT (I) is      =   2.06 A
iii) CURRENT (I3) is    =   2.06 A
iv) CURRENT (I5)  is    =   0.92 A
v) CURRENT (I4)  is     =   1.15 A
vi) CURRENT (I2)  is    =   0.62 A
iv) CURRENT (I1)  is    =   1.24 A
vii) CURRENT (I6)  is   =   0.21 A

Example E05 : Pg 19

In [5]:
                    # EXAMPLE 1-5  PG NO-19
V1=230.;  # VOLTAGE  ONE
P1=1000.;   # POWER
R=V1*V1/P1;   # RESISTANCE OF HEATER
V2=210.;  # VOLTAGE  TWO
P2=V2*V2/R;      # POWER OF HEATER WHEN VOLTAGE IS 210
R=(V1*V1)/P1                # Resistance
print'i)RESISTANCE = ',round(R,2),'ohm'
P2=(V2*V2)/R;# Power
print'ii)POWER = ',round(P2,2),'ohm'
i)RESISTANCE =  52.9 ohm
ii)POWER =  833.65 ohm

Example E06 : Pg 19

In [6]:
      # EXAMPLE 1-6   PG NO-19-20
I=12.;  # CURRENT
V=230.;  # VOLTAGE
P=1000.;  # POWER
T=3.;  # TIME
S=3600.;
E=(I*V/P)*T;  # ENERGY USED
Q=I*T*S;  # QUANTITY OF ELECTRICITY USED
IC=6.24*10.**18.; 
NC=IC*Q;  # NUMBER OF ELECTRON
R=I*V;  # RATE OF ENERGY
print'i) ENERGY               = ',round(E,2),' KWh'
print'ii) QUANTITY            = ',round(Q,2),' C'
print'iiI) NUMBER OF ELECTRON = ',round(NC,2)
print'iiII) RATE OF ENERGY    = ',round(R,2),' W'
i) ENERGY               =  8.28  KWh
ii) QUANTITY            =  129600.0  C
iiI) NUMBER OF ELECTRON =  8.08704e+23
iiII) RATE OF ENERGY    =  2760.0  W

Example E07 : Pg 20

In [7]:
                     # Example 1_7  PG NO-20
I1=3.;        # current
I2=1.;        # current
R=4.;        # Resistor
I=I1-I2;   # current through resistance
print'i)Current Through resistance (I)        = ',round(I,2),' A'
P=I*I*R;
print'ii)Power dissipated in resistor (P)     = ',(P,2),' W'
V=I*R;
print'iii)voltage (V)                         = ',round(V,2),' V'
P1=V*I1;         # power dissipated with 3A source
print'iv)power dissipated with 3A source (P1) = ',round(P1,2),' W'
i)Current Through resistance (I)        =  2.0  A
ii)Power dissipated in resistor (P)     =  (16.0, 2)  W
iii)voltage (V)                         =  8.0  V
iv)power dissipated with 3A source (P1) =  24.0  W

Example E11 : Pg 21

In [8]:
                          # EXAMPLE 1-11             PG NO-21
R55=58.;                    # resistance
R15=50.;                    # Resistance
T1=55.;                  # Temperature 
T2=15.;                    # Temperature
A15=((R55/R15)-1.)/(T1-T2);           # alpha 15
print'i) ALPHA (A15)   =  ',round (A15,5)
T3=0;
A2=A15/(1.+A15*(T3-T2));               # Alpha 2
print'ii)  ALPHA (A2)   =  ',round (A2,5)
i) ALPHA (A15)   =   0.004
ii)  ALPHA (A2)   =   0.00426

Example E13 : Pg 21

In [9]:
                 # EXAMPLE 1-13  PG NO 21-22
R=10.;  # RESISTANCE
V=230.; # VOLTAGE
P=(V*V)/R;                      # POWER
print'i) POWER = ',round (P,2),'W'
i) POWER =  5290.0 W

Example E14 : Pg 22

In [10]:
# EXAMPLE 1-14         PG NO-22
R1=4.;                      # Resistance
R2=2.;                      # Resistance
R3=8.;                          # Resistance
RS=R1+R2;                                         # resistance  When Point A&B is short circuit
print'i)resistance  When Point A&B is short circuit  = ',round (RS,2),'ohm'
RO=R1+R2+R3;                                       # resistance  When Point A&B is   open circuit
print'i)resistance  When Point A&B is open circuit   = ',round (RO,2),'ohm'
i)resistance  When Point A&B is short circuit  =  6.0 ohm
i)resistance  When Point A&B is open circuit   =  14.0 ohm

Example E15 : Pg 22

In [11]:
                           # EXAMPLE 1-15          PG NO-22
I1=0.04;               # CURRENT
I2=0.01;                  # CURRENT
V1=200;                   # VOLTAGE
R=V1/I1;                  # Resistance
print'i)resistance (R)   = ',round (R,2),'ohm'
V2=10.;                      # VOLTAGE
I3=50.;                       # CURRENT
A=0.1;                # AMMETER RESISTANCE
R1=(V2/I3)-0.1;
print'i)Resistance (R1)  = ',round (R1,2),'ohm'
V3=5000.;
V4=250.;
I=I3/V3;
print'i)Current (I)      = ',round (I,2),'A'
R2=(V4-I3)/I;
print'i)resistance (R2)  = ',round (R2,2),'ohm'
i)resistance (R)   =  5000.0 ohm
i)Resistance (R1)  =  0.1 ohm
i)Current (I)      =  0.01 A
i)resistance (R2)  =  20000.0 ohm

Example E16 : Pg 23

In [12]:
                             # EXAMPLE 1-16            PG NO-23
V=1.;                    # ASSUMING
t=1.;                                 # ASSUMING
R1=30.;                       # RESISTANCE
R2=20.;
R3=10.;
E30=(V/R1)*t;                            # ENERGY AT 30 ohm RESISTANCE
print'i)   ENERGY       = ',round (E30,2)
E20=(V/R2)*t;                         # ENERGY AT 20 ohm RESISTANCE
print'ii)  ENERGY       = ',round (E20,2)
E10=(V/R3)*t;                          # ENERGY AT 10 ohm RESISTANCE
print'iii) ENERGY       = ',round (E10,2)
TE=E30+E20+E10;                   # TOTAL ENERGY
print'iv)  TOTAL ENERGY = ',round (TE,2)
PTE=(E30/TE)*100.;                   # PERCENTAGE OF TOTAL ENERGY
print'ii)  PERCENTAGE OF TOTAL ENERGY = ',round (PTE,2),'%' 
i)   ENERGY       =  0.03
ii)  ENERGY       =  0.05
iii) ENERGY       =  0.1
iv)  TOTAL ENERGY =  0.18
ii)  PERCENTAGE OF TOTAL ENERGY =  18.18 %

Example E17 : Pg 23

In [13]:
# EXAMPLE 1-17           PG NO-23
from math import pi
N=10.**3.;               # Number of Turns
a=6.25*10.**-4.;                 # Diameter
l=0.25; 
L=(N*N*4.*pi*10.**-7.*a)/(pi*l);             # INDUCTANCE
print'i)inductance = ',round (L,5),'H'
e=L*100.;                            # EMF
print'ii)EMF = ',round (e,2),'V'
i)inductance =  0.001 H
ii)EMF =  0.1 V

Example E18 : Pg 23

In [14]:
                               # EXAMPLE 1-18           PG NO-23
E=0.05;                    # ENERGY 
i=0.1;                       # CURRENT
L=2*E/i**2                    # INDUCTANCE OF COIL
print'i)inductance = ',round (L,2),' H'
i)inductance =  10.0  H

Example E19 : Pg 23

In [15]:
                         # EXAMPLE 1-19      PG NO 23
i=0.184                 # derivative     of I
e=0.16;
L=e/i;                # Inductance
print'i)Inductance = ',round (L,2),'H'
i)Inductance =  0.87 H

Example E20 : Pg 24

In [16]:
                       # EXAMPLE 1-20   PG NO-24
A=20.*10.**-6.;
L=30.;
P20=1.72*10**-8;
R20=P20*L/A;
X0=0.00426;
I=5.;
X20=X0/(1.+(X0*20));
R55=R20*(1.+X20*(55-20));
P=I*I*R55;
print'i)RESISTANCE = ',round (R20,2),' ohm'
print'i) ALPHA 20(X20)= ',round(X20,2),' ohm'
print'i)RESISTANCE = ',round (R55,2),' ohm'
print'i)POWER = ',round (P,2),'w'
i)RESISTANCE =  0.03  ohm
i) ALPHA 20(X20)=  0.0  ohm
i)RESISTANCE =  0.03  ohm
i)POWER =  0.73 w

Example E21 : Pg 24

In [18]:
                 # EXAMPLE 1-21              PG NO-24
L=200.*10.**-3.;                      # INDUCTAR
t1=1.;                  # di/dt=(-2e**-t+4e**-2t)=-1.9*10**-7;
V=L*(-1.94*10.**-7.);                   # VOLTAGE AT TIME 1
print'i)  Voltage  = ',round (V,2),'V'
t2=0.1;                                  # di/dt=(-2e**-t+4e**-2t)**2=0.216;
V1=L*0.5*(0.216);                   # VOLTAGE AT TIME O.1
print'ii)  Voltage  = ',round (V1,2),'V'
i)  Voltage  =  -0.0 V
ii)  Voltage  =  0.02 V

Example E26 : Pg 27

In [17]:
                       # EXAMPLE 1-26       PG NO 27
L1=(1.1-0.8)/0.75;                  # Inductance
print'i)Inductance = ',round (L1,2),'H'
L2=3*L1;                   # Inductance
print'ii)Inductance = ',round (L2,2),'H'
i)Inductance =  0.4 H
ii)Inductance =  1.2 H

Example E27 : Pg 27

In [19]:
                  # EXAMPLE 1-27     PG NO27
L1=50.*10.**-3.;              #  Inductar
L2=100.*10.**-3.;              # Inductar
X=(L1/L2);
print'i)   (L1/L2)   = ',round (X,2)
#Q11+Q22=600.;                 
Q11=200.;         # flux
Q22=400.;         # flux
print'ii)  Flux  Q11 = ',round (Q11),'mWb'
print'iii) Flux  Q22 = ',round (Q22),' mWb'
i)   (L1/L2)   =  0.5
ii)  Flux  Q11 =  200.0 mWb
iii) Flux  Q22 =  400.0  mWb

Example E28 : Pg 27

In [20]:
                       # EXAMPLE 1-28      PG NO-27
C1=60.;                  # TWO CAPACITOR CONNECTED IN SERIES
EC=(C1*C1)/(C1+C1);                      # EQUIVALENT CAPACITOR
print'i)  Equivalent Cpacitor (EC) is    =  ',round (EC,2),'microF'
i)  Equivalent Cpacitor (EC) is    =   30.0 microF

Example E29 : Pg 27

In [21]:
                      # EXAMPLE 1-29      PG NO-27-28
C1=12.;                  # CAPACITOR
C2=4.;                    # CAPACITOR
C3=8.;
C4=7.;
C1=(C1*C2)/(C1+C2);                      # CAPACITOR IN SEREIS
print'i)    Capacitor = ',round (C1,2),' muF'
C2=(C3*C4)/(C3+C4);                      # CAPACITOR IN PARALLEL
print'i)    Capacitor = ',round (C2,2),' muF'
i)    Capacitor =  3.0  muF
i)    Capacitor =  3.73  muF

Example E30 : Pg 28

In [22]:
                    # EXAMPLE 1-30            PG NO-28
Q=80.*10.**-4.;   # COULUMB CHARGR
C=150.*10.**-6.;
C1=100.*10.**-6.;  # CAPACITANCE
C2=50.*10.**-6.;
Va=Q/C1;
Vb=Q/C2;
E1=(0.5*C1*Va*Va)+(0.5*C2*Vb*Vb);    # ENERGY
E2=0.5*C*(Va+Vb)*(Va+Vb);
print'i)variable = ',round (Va,2),'ohm'
print'i)variable = ',round (Vb,2),'ohm'
print'i)energy = ',round (E1,2),'J'
print'i)energy = ',round (E2,2),'J'
i)variable =  80.0 ohm
i)variable =  160.0 ohm
i)energy =  0.96 J
i)energy =  4.32 J

Example E32 : Pg 29

In [23]:
   # EXAMPLE 1-32  PG NO-29
V=10.;              # VOLTAGE
R1=2.;
R2=8.;            # RESISTANCE
I1=V/(R1+R2);   # CURRENT
I2=1.25;        # CURRENT THROUGH SECOND BRANCH
R=V/I2-5.;
print'i)CURRENT = ',round (I1,2),' A'
print'ii)RESISTANCE = ',round (R,2),' ohm'
i)CURRENT =  1.0  A
ii)RESISTANCE =  3.0  ohm

Example E33 : Pg 29

In [24]:
                  # EXAMPLE 1-33       PG NO-29-30
R1=29980;   # RESISTANCE
I1=9.99;            # current
R2=20;
I2=0.01;     # current
r=20*0.01/9.99;           # resistance
print'i)resistance = ',round (r,2),'ohm'
i)resistance =  0.02 ohm

Example E34 : Pg 30

In [25]:
                   # Example   1-34            PG  NO-30
V=20.;                # VOLTAGE
R1=5.;                # Resistance
X=7.5;
P=(20./(R1+X))**2.*(X);                # Power
print'i)  Power (P) is    =  ',round(P,2),'W'
i)  Power (P) is    =   19.2 W

Example E35 : Pg 30

In [26]:
                             # EXAMPLE 1-35        PG NO 30-31
I1=4.;                    # Current
I2=6.;                      # Current
V=110.;                        # Voltage
Vab1=V-(6.+4.)*2.;
VB=80.;
VC=50.;
R11=(Vab1-VB)/I1;
R12=(Vab1-VC)/I2;                     
Vab2=V-(-2.+20.)*2.;                    # Voltage
R21=(VB-Vab2)/2.;                  # Resistance
R22=(Vab2-VC)/20.;               # Resistance
I=(V-VB)/2.;                 # Current
R=(VB-VC)/I;            # Resistance
print'i)variable      = ',round(Vab1,2),'ohm'
print'ii)resistance   = ',round(R11,2),'ohm'
print'iii)resistance  = ',round(R12,2),'ohm'
print'iv)variable     = ',round(Vab2,2),'ohm'
print'v)resistance    = ',round(R21,2),'ohm'
print'vi)resistance   = ',round(R22,2),'ohm'
print'vii)resistance  = ',round(R,2),'ohm'
print'viii)Current    = ',round(I,2),'A'
i)variable      =  90.0 ohm
ii)resistance   =  2.5 ohm
iii)resistance  =  6.67 ohm
iv)variable     =  74.0 ohm
v)resistance    =  3.0 ohm
vi)resistance   =  1.2 ohm
vii)resistance  =  2.0 ohm
viii)Current    =  15.0 A

Example E36 : Pg 31

In [27]:
                       # EXAMPLE 1-36    PG NO-31
T=0.99425;    # TIME
print'i)Time = ',round(T,2),'seconds'
X=0.37;      # DERAVATIVES OF 'I'  W.R.T
print'ii)(di\dt) = ',round(X,2),'A\sec'
LI=0.63;     # CURRENT
dli=0.37;    #  deravatives of 'SI' w.r.t
print'iii)(dsi\dt) = ',round(dli,2),' Wb-turns\sec'
VL=dli;
print'iv)(VL) = ',round(VL,2),'V'
Ri=0.63;
VR=Ri;
print'v)VR = ',round(VR,2),'V'
E=0.5*LI*LI;    # ENERGY
print'vi)ENERGY stored in magnetic field = ',round(E,2),'J'
E1=LI*VL;   # ENERGY STORED IN MAGNETIC FIELD
H=Ri*Ri;     # HEAT
print'vii) Rate of Energy stored in magnetic field = ',round(E1,2),'W'
print'viii)Rate of dissipation of heat in resistor = ',round(H,2),' W'
print'ix)Rate of supply of battery energy = ',round(Ri,2),'W'
i)Time =  0.99 seconds
ii)(di\dt) =  0.37 A\sec
iii)(dsi\dt) =  0.37  Wb-turns\sec
iv)(VL) =  0.37 V
v)VR =  0.63 V
vi)ENERGY stored in magnetic field =  0.2 J
vii) Rate of Energy stored in magnetic field =  0.23 W
viii)Rate of dissipation of heat in resistor =  0.4  W
ix)Rate of supply of battery energy =  0.63 W

Example E37 : Pg 32

In [28]:
T=2000.;    # TEMPERATURE
T1=15.;    # ROOM TEMPERATURE
V=220.;  # VOLTAGE
P=40.;  # POWER
A15=0.005;
R=V*V/P;   # RESISTANCE
R15=R/(1.+A15*(T-T1));   # RESISTANCE AT TIME OF SWITICHING
I=V/R15;      # CURRENT
print'i)resistance   = ',round(R,2),'ohm'
print'ii)resistance  = ',round(R15,2),'ohm'
print'iii)current    =  ',round(I,2),'A'
i)resistance   =  1210.0 ohm
ii)resistance  =  110.76 ohm
iii)current    =   1.99 A

Example E38 : Pg 32

In [29]:
                    # EXAMPLE  1-38       PG NO-32
from math import pi
F=50.;                     # Frequency
W=2.*pi*F;
print'i)W  = ',round(W,2),'rad/sec'
t=0.0025;                 # time
Vm=10.;
A1=0.01;
A2=0.005;
i=((A2*Vm**2.)/2.)+0.0707;
print'ii)Current = ',round(i,2),'A'
i)W  =  314.16 rad/sec
ii)Current =  0.32 A

Example E39 : Pg 32

In [30]:
                   # EXAMPLE 1-39    PG NO-32-33
V=440.;               # voltage
V1=5.;                  # voltage
R=40.;            # resistance
V2=220.;
V3=100.;
Rv=(V3*R)/(V2-V3);            # insulation resistance
print'i)Resistance (Rv) = ',round(Rv,2),'Kohm'
Ri=(Rv*(V-V1))/V1;            # insulation resistance
print'iii)Resistance(Ri) = ',round(Ri,2),'Kohm'
i)Resistance (Rv) =  33.33 Kohm
iii)Resistance(Ri) =  2900.0 Kohm

Example E40 : Pg 33

In [31]:
                             # EXAMPLE 1-40       PG NO-33
from math import pi 
P=1.72*10.**-8.;                   # PRO
t=0.03;                        # distance
R=((4.*P)/(pi*0.03))*0.47;              # Resistance
print'i)Resistance = ',round(R,7),'ohm'
i)Resistance =  3e-07 ohm

Example E41 : Pg 33

In [32]:
                            # EXAMPLE 1-41       PG NO-33
from math import pi
P=1.72*10**-8;                   # PRO
t=0.03;
R=((P*pi)/(4.*0.03*0.47));
print'i)Resistance = ',round(R,7),'ohm'
i)Resistance =  1e-06 ohm

Example E44 : Pg 34

In [33]:
                # EXAMPLE 1-42         PG NO-34
import math 
P=100.;              # pro
L=0.5;              # inductance
r1=0.15;             # radius
r2=0.075;            # radius
R=(100./(2.*math.pi*L))*(0.731);          # resistance
print'i)Resistance = ',round(R,2),'ohm'
i)Resistance =  23.27 ohm

Example E44 : Pg 36

In [34]:
                 # EXAMPLE 1-44  PG NO-36
R1=12.;               # Resistance
R2=0.2;                # Resistance
R3=15.; 
V1=(-(R2*R3)+R1)/3.;              # voltage drop 
print'i) VOLTAGE  = ',round(V1,2),'V'
i) VOLTAGE  =  3.0 V

Example E46 : Pg 37

In [35]:
             # EXAMPLE 1-46     PG NO37
import numpy
A=([85, -25],[-25, 135]);         #  Finding current
B=([60],[100]);
X=numpy.divide(A,B);#current
print'i)CURRENT = ',X,'A'
I1=0.977;
I2=0.922;        # WE HAVE FOUNDED  I1 and I2
I3=I1-I2;
print'ii)CURRENT = ',I3,'A'
i)CURRENT =  [[ 1 -1]
 [-1  1]] A
ii)CURRENT =  0.055 A

Example E47 : Pg 39

In [36]:
            # EXAMPLE 1-48 PG NO-39-40
R1=4.;                      # Resistance
R2=4.;                     # Resistance
R3=8.;                       # Resistance
RA=(R1*R2)/(R1+R2+R3);
print'i)RESISTANCE = ',round(RA,2),'ohm'
RB=(R1*R3)/(R1+R2+R3);
print'ii)RESISTANCE = ',round(RB,2),'ohm'
RC=(R2*R3)/(R1+R2+R3);
print'iii)RESISTANCE = ',round(RC,2),'ohm'
i)RESISTANCE =  1.0 ohm
ii)RESISTANCE =  2.0 ohm
iii)RESISTANCE =  2.0 ohm

Example E48 : Pg 39

In [37]:
              # EXAMPLE 1-48 PG NO-39-40
R1=6.8;                 # Resistance
R2=15.;
R3=10.;
RA=(R1*R2)/(R1+R2+R3);
print'i)RESISTANCE = ',round(RA,2),'ohm'
RB=(R1*R3)/(R1+R2+R3);
print'ii)RESISTANCE = ',round(RB,2),'ohm'
RC=(R2*R3)/(R1+R2+R3);
print'iii)RESISTANCE = ',round(RC,2),'ohm'
i)RESISTANCE =  3.21 ohm
ii)RESISTANCE =  2.14 ohm
iii)RESISTANCE =  4.72 ohm

Example E50 : Pg 45

In [38]:
              # EXAMPLE 1-50      PG NO-45
TR=17./6.;                  # TOTAL RESISTANCE
V=40.;                     # VOLTAGE
I=5.;                       # CURRENT
Vs=(TR*I)-V;
print'i)VOLTAGE = ',round(Vs,2),'V'
i)VOLTAGE =  -25.83 V

Example E51 : Pg 45

In [39]:
                 # EXAMPLE 1-51      PG NO-45-46
TR=2.05;             # TOTAL  RESISTANCE
V=2.;                 # VOLTAGE 
P=V**2./TR;                          # ower
print'i)POWER = ',round(P,2),'W'
i)POWER =  1.95 W

Example E52 : Pg 46

In [40]:
                  # EXAMPLE  1-52    PG NO-46
L1=1.;
L2=1.;
L3=1.;                # INDUCTANCE
DL1=((L1*L2)+(L2*L3)+(L3*L1))/(L1*L2*L3);
print'i)DELTA INDUCTANCE = ',round(DL1,2),'H'
L4=1.5;
L5=1.5;                   # Inductance
L6=1.5;
L=(L4*(L5+L6))/(L4+L5+L6);
print'ii)INDUCTANCE = ',round(L,2),'H'
i)DELTA INDUCTANCE =  3.0 H
ii)INDUCTANCE =  1.0 H

Example E53 : Pg 46

In [41]:
               # EXAMPLE 1-53         PG NO-46-47
R1=200.;                # RESISTANCE
R2=50.;
R3=30.;
R4=20.;
Rab=(R1*(R2+R3+R4))/(R1+R2+R3+R4);                # equvalent    resistance
print'i)RESISTANCE = ',round(Rab,2),'ohm'
i)RESISTANCE =  66.67 ohm