Chapter 6: Solar Photovoltaic Systems

Ex6.1:Pg-162

In [3]:
# Given data :
import math
T=27 +273 # temperature converted in kelvin
NV=1e22 # effective density of states in valence band in cm^(-3)
NA=1e19 # acceptor density in cm^(-3)
k=8.629*10**(-5) # boltzmann constant in eV/K
EFV=k*T*math.log(NV/NA) # closeness of fermi level i.e Ef-Ev
print "Closeness of fermi level with valence bond is",round(EFV,4),"eV"
Closeness of fermi level with valence bond is 0.1788 eV

Ex6.2:Pg-165

In [20]:
# Given data :
E =2.42 # Band gap in eV
hc=1.24 # planck's constant * speed of light
# solution
Lambda=1.24/E # in micro-meter usinf eq 6.4

print "The optimum wavelength is ",round(Lambda,3)," micro meter"
The optimum wavelength is  0.512  micro meter

Ex6.3:Pg-182

In [22]:
# Given data :
Pout=1*735 # motor power output in W
Peffi=0.85 # motor efficiency
cellarea=9*4*125*125e-6 # area in m^2 
Rad=1000 #incident radiation in kW/m^2
celleffi=0.12 # cell efficiency

# soln.
Pin=Pout/Peffi # power req by motor in W
N=Pin/(Rad*cellarea*celleffi) # number of modules

print round(N)," number of modules are required" 
13.0  number of modules are required

Ex6.4:Pg-185

In [24]:
# given:
noMPPTpower=10*8 # power without MPPT in W from fig 6.25
MaxP=25*5 # maximum power by PV module in W from fig 6.25
effi=0.95 # efficiency of MPPT
MPPTcost=4000 # Cost in rupees
# Soln
Pact=MaxP*effi # actual power produced in W
Psurplus=Pact-noMPPTpower # Surplus power in W
t=MPPTcost/(3*Psurplus/1000) # time required in hours 
print "time required is ",round(t,2),"hours"
time required is  34408.6 hours