Chapter2 - Optical Fibers

Example 2.4.1 page 2-10

In [3]:
from __future__ import division
from numpy import arcsin, sqrt, pi
#Numerical Aperture and critical angle
n1=1.46 #refractive index
d=0.01 #difference
na=n1*sqrt(2*d) #numerical aperture
x=1-d #
oc=arcsin(x)*180/pi #in degree
print "numerical aperture = ",round(na,2)
print "critical angle at core cladding interface =",round(oc,1)," degree"
numerical aperture =  0.21
critical angle at core cladding interface = 81.9  degree

Example 2.5.1, page 2-11

In [4]:
from __future__ import division
from numpy import arcsin, sqrt, pi
#Numerical Aperture ,critical angle and acceptance angle
n2=1.45 #core refrative index
n1=1.49 #cladding refrative index
oc=arcsin(n2/n1)*180/pi #in degree
na=sqrt(n1**2-n2**2) #numerical aperture
pc=arcsin(na)*180/pi #degree
print "critical angle is =",round(oc,2)," degree"
print "numerical aperture =",round(na,3)
print "acceptance angle is",round(pc,2)," degree"
# Answer in the book are not accurate.
critical angle is = 76.69  degree
numerical aperture = 0.343
acceptance angle is 20.06  degree

Example 2.5.2, page 2-11

In [5]:
from __future__ import division
from numpy import arcsin, sqrt, pi
delta = 1.2/100       # Relative refractive difference index
n1=1.45         # Core refractive index 
NA= n1*sqrt(2*delta)        #computing numerical aperture
Acceptance_angle = arcsin(NA)*180/pi    #computing acceptance angle
si = pi*NA**2         #computing solid acceptance angle
print "Numerical aperture is %.3f.\nAcceptance angle is %.2f degree.\nSolid acceptance angle is %.3f radians." %(NA,Acceptance_angle,si) 
Numerical aperture is 0.225.
Acceptance angle is 12.98 degree.
Solid acceptance angle is 0.159 radians.

Example 2.5.3, page 2-12

In [6]:
NA = 0.45       # Numerical Aperture
Acceptance_angle = arcsin(NA)*180/pi    #computing acceptance angle.
print "Acceptance angle is %.1f degree." %Acceptance_angle
Acceptance angle is 26.7 degree.

Example 2.5.4, page 2-12

In [7]:
from numpy import arctan
diameter = 1        #Diameter in centimeter
Focal_length = 10       #Focal length in centimeter
radius=diameter/2   #computing radius
Acceptance_angle = arctan(radius/Focal_length)*180/pi   #computing acceptance angle
Conical_full_angle = 2*Acceptance_angle         #computing conical angle
Solid_acceptance_angle = pi*Acceptance_angle**2     #computing solid acceptance angle
NA = sqrt(Solid_acceptance_angle/pi)       #computing Numerical aperture
print "Numerical aperture is %.2f.\nConical full angle is %.2f degree." %(NA,Conical_full_angle) 
Numerical aperture is 2.86.
Conical full angle is 5.72 degree.

Example 2.6.1, page 2-16

In [8]:
from numpy import cos
NA = 0.45       #Numerical aperture
betaB = 45       # Skew ray change direction by 90 degree at each reflection
Meridional_theta = arcsin(NA)*180/pi    #computing acceptacne angle for meridoinal ray
Skew_theta = arcsin(NA/cos(betaB*pi/180))*180/pi   #computing acceptacne angle for skew ray
print "Acceptacne angle for Meridoinal ray is %.2f degree.\nAcceptance angle for Skew ray %.1f degree." %(Meridional_theta,Skew_theta) 
Acceptacne angle for Meridoinal ray is 26.74 degree.
Acceptance angle for Skew ray 39.5 degree.

Example 2.8.1, page 2-21

In [9]:
core_diameter=78*10**-6         #core diameter
delta=1.4/100       #relative index difference
lamda=0.8*10**-6        #operating wavelength
n1=1.47      #core refractive index
a=core_diameter/2       #computing core radius
v= 2*3.14*a*n1*sqrt(2*delta)/lamda       #computing normalized frequency
M=(v)**2/2       #computing guided modes
print "Normalized Frequency is %.3f.\nTotal number of guided modes are %.1f" %(v,M)
#answer in the book are incorrect.
Normalized Frequency is 75.306.
Total number of guided modes are 2835.5

Example 2.8.2, page 2-23

In [10]:
n1=1.47     #refractive index of core
a=4.3*10**-6        #radius of core
delta=0.2/100       #relative index difference
lamda= 2*3.14*a*n1*sqrt(2*delta)/2.405      #computing wavelength
lamda=lamda*10**9 
print "Wavelength of fiber is %d nm." %lamda
#answer in the book is given as 1230nm which is incorrect.
Wavelength of fiber is 1043 nm.

Example 2.8.3, page 2-23

In [11]:
n1=1.482        #refractive index of core
n2=1.474        #refractive index of cladding
lamda=820*10**-9        #Wavelength
NA=sqrt(n1**2 - n2**2)        #computing Numerical aperture
theta= arcsin(NA)*180/pi         #computing acceptance angle
solid_angle=pi*(NA)**2      #computing solid angle
a=2.405*lamda/(2*3.14*NA)       #computing core radius
a=a*10**6 
print "Numerical aperture is %.3f.\nAcceptance angle is %.1f degrees.\nSolid angle is %.3f radians.\nCore radius is %.2f micrometer." %(NA,theta,solid_angle,a) 
#answer in the book are not accurate.
Numerical aperture is 0.154.
Acceptance angle is 8.8 degrees.
Solid angle is 0.074 radians.
Core radius is 2.04 micrometer.

Example 2.8.4, page 2-24

In [12]:
from numpy import ceil
NA=0.16     #Numerical aperture
n1=1.45     #core refractive index
d=60*10**-6     #core diameter
lamda=0.82*10**-6       #wavelength
a=d/2       #core radius
v=2*3.14*a*NA/lamda         #computing normalized frequency
M=v**2/2         #computing guided modes
print "if normalized frequency is taken as %d, then there are %d guided modes." %(ceil(v),M) 
#Answer given in the textbook is wrong.
if normalized frequency is taken as 37, then there are 675 guided modes.

Example 2.8.5, page 2-26

In [13]:
NA=0.2      #Numericla aperture
d=50*10**-6         #Diameter of core
lamda=1*10**-6       #Wavelength
a=d/2       #computing radius
v=2*3.14*a*NA/lamda     #computing normalized frequency
Mg=v**2/4        #computing mode volume for parabollic profile
Mg=round(Mg) 
print "Normalized Frequency is %.1f.\nTotal number of guided modes are %.d." %(v,Mg) 
#answer in the book is wrong
Normalized Frequency is 31.4.
Total number of guided modes are 246.

Example 2.8.6, page 2-27

In [14]:
delta=0.015         #relative refractive index
n1=1.48      #core refractive index
lamda=0.85*10**-6      #wavelength
a=(2.4*lamda)/(2*3.14*n1*sqrt(2*delta))         #computing radius of core
d=2*a       #computing diameter of core
a=a*10**7 
a=round(a,2) 
a=a/10
d=d*10**6 
print "Core radius is %.1f micrometer.\nCore diameter is %.1f micrometer." %(a,2*a) 
print "When delta is reduced by 10 percent-"
delta=0.0015 
a=(2.4*lamda)/(2*3.14*n1*sqrt(2*delta))         #computing radius of core
d=2*a       #computing diameter of core
a=a*10**7 
a=round(a) 
a=a/10
d=d*10**6 
print "Core radius is %.1f micrometer.\nCore diameter is %.1f micrometer." %(a,2*a) 
Core radius is 1.3 micrometer.
Core diameter is 2.5 micrometer.
When delta is reduced by 10 percent-
Core radius is 4.0 micrometer.
Core diameter is 8.0 micrometer.

Example 2.8.7, page 2-28

In [15]:
NA=0.25      #Numericla aperture
d=45*10**-6         #Diameter of core
lamda=1.5*10**-6       #Wavelength
a=d/2       #computing radius
v=2*3.14*a*NA/lamda     #computing normalized frequency
Mg=v**2/4        #computing mode volume for parabollic profile
Mg=round(Mg,2) 
print "Normalized Frequency is %.2f.\nTotal number of guided modes are %.d." %(v,ceil(Mg) )
#answer in the book for normalized frequency is 23.55, deviation 0.05
Normalized Frequency is 23.55.
Total number of guided modes are 139.

Example 2.8.8, page 2-28

In [16]:
NA=0.25      #Numericla aperture
d=45*10**-6         #Diameter of core
lamda=1.2*10**-6       #Wavelength
a=d/2       #computing radius
v=2*3.14*a*NA/lamda     #computing normalized frequency
Mg=v**2/4        #computing mode volume for parabollic profile
Mg=round(Mg,2) 
print "Normalized Frequency is %.1f.\nTotal number of guided modes are %.d." %(v,Mg) 
Normalized Frequency is 29.4.
Total number of guided modes are 216.

Example 2.8.9, page 2-28

In [19]:
n1=1.54         #refractive index of core
n2=1.5      #refractive index of cladding
a=25*10**-6         #Radius of core in um
lamda=1.3*10**-6       #Wavelength in m
NA=sqrt(n1**2-n2**2) 
v=2*3.14*a*NA/lamda     #computing normalized frequency
Mg=v**2/4        #computing mode volume for parabollic profile
lamda_cut_off=v*lamda/2.405     #computing cut off wavelength
lamda_cut_off=lamda_cut_off*10**6 
print "Normalized Frequency is %0.f.\nTotal number of guided modes are %.d.\nCut off wavelength is %.1f micrometer." %(v,Mg,lamda_cut_off) 
Normalized Frequency is 42.
Total number of guided modes are 443.
Cut off wavelength is 22.8 micrometer.

Example 2.9.1 page 2-30

In [21]:
L_BL=8*10**-2    #beat length
Br=2*3.14/L_BL      #computing modal briefringence
print "Modal briefringence is %.1f per meter." %Br
Modal briefringence is 78.5 per meter.

Example 2.9.2, page 2-33

In [23]:
from numpy import log10
Pin=500*10**-6      #input power
L=200       #length of fiber
loss=2      #loss associated with fiber
Pin_dbm=10*log10(Pin/(10**-3))    #computing input power in dBm
Pin_dbm=round(Pin_dbm) 
Pout_dbm=Pin_dbm-L*loss         #computing output power level
Pout= 10**(Pout_dbm/10) 
print "Output power is %.2e mW." %Pout
Output power is 5.01e-41 mW.

Example 2.12.1, page 2-37

In [25]:
a=4.5*10**-6         #core diameter
delta=0.25/100       #relative index difference
lamda=0.85*10**-6        #operating wavelength
n1=1.46      #core refractive index
v= 2*pi*a*n1*sqrt(2*delta)/lamda       #computing normalized frequency
lamda_cut_off=v*lamda/2.405         #computing cut off wavelength
lamda_cut_off=lamda_cut_off*10**9 
print "Cut off wavelength is %.d nanometer." %(lamda_cut_off)
print "When delta is 1.25 percent-"  
delta=1.25/100 
v= 2*pi*a*n1*sqrt(2*delta)/lamda       #computing normalized frequency
lamda_cut_off=v*lamda/2.405         #computing cut off wavelength
lamda_cut_off=lamda_cut_off*10**7 
lamda_cut_off=round(lamda_cut_off) 
lamda_cut_off=lamda_cut_off*100 
print "Cut off wavelength is %.d nanometer." %(lamda_cut_off) 
Cut off wavelength is 1213 nanometer.
When delta is 1.25 percent-
Cut off wavelength is 2700 nanometer.

Example 2.12.2, page 2-38

In [26]:
a=50*10**-6         #core radius
lamda=1500*10**-9        #operating wavelength
n1=2.53      #core refractive index
n2=1.5      #cladding refractive index
delta=(n1-n2)/n1        #computing delta
v= 2*3.14*a*n1*sqrt(2*delta)/lamda       #computing normalized frequency
M=(v)**2/2       #computing guided modes
print "Normalized Frequency is %.1f\nTotal number of guided modes are %.d" %(v,M) 

#Calculation error in book. Answer in the book is wrong
Normalized Frequency is 477.9
Total number of guided modes are 114191

Example 2.12.3, page 2-38

In [27]:
core_diameter=8*10**-6         #core diameter
delta=0.92/100       #relative index difference
lamda=1550*10**-9        #operating wavelength
n1=1.45      #core refractive index
a=core_diameter/2       #computing core radius
v= 2*pi*a*n1*sqrt(2*delta)/lamda       #computing normalized frequency
M=(v)**2/2       #computing guided modes
print "Normalized Frequency is %.1f.\nTotal number of guided modes are %.d." %(v,M) 
Normalized Frequency is 3.2.
Total number of guided modes are 5.

Example 2.12.4, page 2-39

In [30]:
delta=1/100       #relative index difference
n1=1.5      #core refractive index
c=3*10**8 
L=6 
n2=sqrt(n1**2-2*delta*n1**2)       #computing refractive index of cladding
delta_T=L*n1**2*delta/(c*n2)     #computing pulse broadning
delta_T=delta_T*10**11 
delta_T=round(delta_T) 
print "Delay difference between slowest and fastest mode is %d ns/km." %delta_T 
print "This means that a pulse broadnes by %d ns after travel time a distance of %d km." %(delta_T,L)
Delay difference between slowest and fastest mode is 30 ns/km.
This means that a pulse broadnes by 30 ns after travel time a distance of 6 km.

Example 2.17.1, page 2-60

In [33]:
n1=1.48         #core refractive index
n2=1.46         #cladding refractive index
phi = arcsin(n2/n1)*180/pi      #computing critical angle
NA = sqrt(n1**2 - n2**2)  #computing numericla aperture
theta= arcsin(NA)*180/pi        #computing acceptance angle
print "Critical angle is %.2f degrees.\nNumerical aperture is %.3f.\nAcceptance angle is %.2f degree." %(phi,NA,theta) 
#answers in the book are wrong.
Critical angle is 80.57 degrees.
Numerical aperture is 0.242.
Acceptance angle is 14.03 degree.

Question 4, page 2-61

In [35]:
L_BL=8*10**-2    #beat length
Br=2*3.14/L_BL      #computing modal briefringence
print "Modal briefringence is %.1f per meter." %Br 
Modal briefringence is 78.5 per meter.

Question 5, page 2-62

In [38]:
L_BL=0.6*10**-3    #beat length
lamda=1.4*10**-6    #wavelength
L_BL1=70 
Bh=lamda/L_BL      #computing high briefringence
Bl=lamda/L_BL1      #computing low briefringence
print "High briefringence is %.2e.\nLow briefringence is %.1e."%(Bh,Bl)
High briefringence is 2.33e-03.
Low briefringence is 2.0e-08.