import math
#Variable declaration
c=2.998*10**8 #speed of light in m/s
h=0.5*10**-6 #operating wavelength in um
t=1000 #tempreture in K
#Calculation
f=c/h #operating frequency
r=1/math.exp((6.626*10**-34*f)/(1.381*10**-23*t)) #ratio
#Result
print'Ratio = %.1f x 10^-13 '%(r*10**13)
#Variable declaration
n=1.78 #refractive index
L=0.04 #length in meter
h=0.55*10**-6 #peak emission wavelength in um
c=2.998*10**8 #speed of light in meter
#Calculation
q=2*n*L/h #no of longitudinal modes
sf=c/(2*n*L) #frequency separation modes
#Result
print'No of longitudinal modes = %.1f x 10^5'%(q/10**5)
print'Frequency separation modes = %.1f GHz'%(sf/10**9)
#Variable declaration
a=30 #active cavity losses
L=0.06 #length in meter
r=0.3 #reflectivity
#Calculation
gm=a+(1/L)+(1/r) #laser gain coefficient
#Result
print'Laser gain coefficient = %.1f cm^-1'%gm
import math
#Variable declaration
Bt1=7.21*10**-10 #recombination coefficient of GaAs
Bt2=1.79*10**-15 #recombination coefficient of Si
N=10**18 #hole concentration
#Calculation
tr1=(Bt1*N)**-1 #radiative carrier lifetime of GaAs
tr2=(Bt2*N)**-1 #radiative carrier lifetime of Si
#Result
print'Radiative carrier lifetime of silicon = %.2f ms'%(tr2*1000)
print'Radiative carrier lifetime of gallium arsenide = %.2f ns'%(tr1*10**9)
import math
#Variable declaration
n=3.6 #refractive index
B=21*10**-3 #gain factor
a=10 #loss coefficient per cm
L=250*10**-4 #optical cavity length
w=100*10**-4 #optical cavity width
#Calculation
r=((n-1)/(n+1))**2 #reflectivity
jth=(1/B)*(a+math.log(1/r)/L) #threshold current density
area=L*w #area
ith=jth*area #threshold current
#Result
print'Threshold current = %.1f mA'%(ith*1000)
import math
#Variable declaration
nt=0.18 #total efficiency
E=1.43 #bandgap energy
V=2.5 #voltage
#Calculation
nep=nt*(E/V)*100 #external power efficiency
#Result
print'External power efficiency = %d percent'%nep
import math
#Variable declaration
t1=20+273 #tempreture 20 °C convert to kelvin
t2=80+273 #tempreture 80 °C convert to kelvin
L1=160 #tempreture 160K
L2=55 #tempreture 55K
#Calculation
a=t1*L1**-1
b=t2*L1**-1
c=t1*L2**-1
d=t2*L2**-1
Ja1=math.exp(a) #For the AlGaAs device
Ja2=math.exp(b) #For the AlGaAs device
Ja=Ja2/Ja1 #ratio of the current densities
Jb1=math.exp(c) #For the InGaAsP device
Jb2=math.exp(d) #For the InGaAsP device
Jb=Jb2/Jb1 #ratio of the current densities
#Result
print'Threshold current density at 20 °C = %.2f'%Ja
print' at 80 °C = %.2f' %Jb
import math
#Variable declaration
s=10**-15 #RIN value
f=100*10**6 #bandwidth
e=1.602*10**-19 #1 electron volt
n=0.6 #quantum efficiency
h=1.55*10**-6 #wavelength in um
pe=2*10**-3 #power incident
B=100*10**6 #bandwidth
h1=6.626*10**-34 #plancks constant
c=2.998*10**8 #speed of light
#Calculation
sr=s*f
rin=math.sqrt(sr) #RMS value of power fluctuation
irn=e*n*h*rin*pe*math.sqrt(B)*10**-4/(h1*c) #RMS noise current
#Result
print'(a) RMS value of power fluctuation = %.2f x 10^-4 W'%(rin*10**4)
print'(b) RMS noise current = %.2f x 10^-7 A'%(irn*10**7)