import math
#Variable declaration
tr=60*10**-9 #radiative ecombination lifetime
tnr=100*10**-9 #nonradiative ecombination lifetime
h=6.626*10**-34 #plancks const
c=2.998*10**8 #speed of light
i=40*10**-3 #drive current
e=1.602*10**-19 #1 electron volt
h1=0.87*10**-6 #wavelength
#Calculation
t=(tr*tnr)/(tr+tnr) #total carrier recombination lifetime
n=t/tr #quantum efficiency
pin=n*h*c*i/(e*h1) #internal power generated
#Result
print'Total carrier recombination lifetime = %.1f ns'%(t*10**9)
print'Power internally generated = %.1f mW'%(pin*10**3)
import math
#Variable declaration
F=0.68 #crystal–air interface
n=1 #refractive index of air
nx=3.6 #refractive index of Ga
#Calculation
pe=(F*n**2)/(4*nx**2) #Optical power emitted
n1=pe*100/2 #External power efficiency
#Result
print'Optical power emitted = %.3f *Pint'%(pe)
print'External power efficiency = %.2f percent'%n1
import math
#Variable declaration
NA=0.2 #numerical aperture
pe=0.013 #optical power emitted
#Calculation
nc=NA**2 #coupling efficiency
Loss=-10*math.log10(nc) #optical loss
pc=nc*pe #coupling power
Loss1=-10*math.log10(pc) #internal power relative loss
#Result
print'Coupling efficiency = %.2f'%nc
print'Optical loss = %.1f dB'%Loss
print'Loss due internal optical power = %.1f dB'%Loss1
import math
#Variable declaration
r=0.01 #fresnel reflection coefficient
Rd=30 #radiance
NA=0.15 #numerical aperture
a=25*10**-4
#Calculation
A=math.pi*a**2 #emission area
pc=math.pi*(1-r)*A*Rd*NA**2 #optical power
#Result
print'Optical power = %.1f uW'%(pc*10**6)
import math
#Variable declaration
pc=190*10**-6 #optical power
p=25*10**-3 #forward current
v=1.5 #voltage
#Calculation
n=(pc/(p*v))*100 #power efficiency
#Result
print'Overall power efficiency = %.1f percent'%n
import math
#Variable declaration
pdc=300*10**-6 #optical output power
f=20*10**6 #frequency in hertz
ti=5*10**-9 #minority carrier recombination lifetime
f2=100*10**6 #frequency in hertz
t=10**-8
w=math.sqrt(3)
#Calculation
pe1=pdc/math.sqrt(1+(2*math.pi*f*ti)**2) #Optical output power (f=20 MHz)
pe2=pdc/math.sqrt(1+(2*math.pi*f2*ti)**2) #Optical output power (f=100 MHz)
f=w/(math.pi*t)
B=f/math.sqrt(2)
#Result
print'(a) Optical output power (f=20 MHz) = %.2f uW'%(pe1*10**6)
print'(b) Optical output power (f=100 MHz) = %.2f uW'%(pe2*10**6)
print'Electrical bandwidth = %.1f MHz'%(B*10**-6)
import math
#Variable declaration
bo=1.84*10**7 #proportionality constant
e=-1.602*10**-19 #charge of electron
k=1.38*10**-23 #boltzman constant
t1=290 #tempreture in kelvin
exp=0.67
#Calculation
bt=bo*math.exp(e/(k*t1)) #degradation rate
t=-math.log(exp)/bt #operating lifetime
#Result
print'CW operating lifetime = %.1f x 10^9 h'%(t*10**-9)