import math
T = 20. #[C]
P = 1. #[atm]
x_N2 = 0
x_O2 = 0
x_water = 1-x_N2-x_O2
p_water = 0.023 #[atm]
y_water = x_water*p_water/P
print "The mole fraction of water vapour in air in equilibrium with water is %f"%(y_water)
import math
T = 20. #[C]
P = 1. #[atm]
y_water = 0.023
y = 1-y_water
y_O2 = y*0.21
H_O2 = 40100 #[atm]
x_O2 = y_O2*P/H_O2
y_N2 = y*0.79
H_N2 = 80400. #[atm]
x_N2 = y_N2*P/H_N2
c = x_O2*998.2/18 #[(mole O2)/(L solution)]
V = c*24.06 #[(L O2, STP)/(L solution)]
V = V*1000 #[(ml O2, STP)/(L solution)]
print "Concentration of oxygen dissolved in water at equilibrium is %f mL O2, STP)/L solution)"%(V)
import math
from numpy import *
P = 1.0 #[atm]
p_w = 0.023 #[atm] Vapor pressure of pure water
H_o = 40100 #[atm] Vapor pressure of pure oxygen
H_n = 80400. #[atm] Vapor pressure of pure nitrogen
A = matrix([[0.023, 0, 0, -1, 0, 0],[0, 40100, 0, 0, -1, 0],[0, 0 ,80400, 0, 0, -1],[0, 0, 0, 1, 1 ,1],[1 ,1, 1, 0, 0 ,0],[0, 0, 0, 0, 0.79, -0.21]]);
B = matrix([[0],[0],[0],[1],[1],[0]])
X = linalg.inv(A)
X = X * B
print " The composition in liquid and vapor phase are summarized in the following table:"
print " y_water \t %f"%(X[3])
print " y_oxygen \t %f"%(X[4])
print " y_nitrogen \t %f"%(X[5])
print " x_water \t %f"%(X[0])
print " x_oxygen \t %e"%(X[1])
print " x_nitrogen \t %e"%(X[2])
import math
T = 20. #[C]
x_b = 0.80
x_t = 0.20
A_b = 6.90565
B_b = 1211.033
C_b = 220.79
p_b = 10**(A_b-B_b/(T+C_b))
A_t = 6.95334
B_t = 1343.943
C_t = 219.337
p_t = 10**(A_t-B_t/(T+C_t))
p_1 = x_b*p_b
p_2 = x_t*p_t
y = 1.00 # y =(y_b+y_t) sum of the mole fractions of the benzene and toluene in the gaseous phase
P = (p_1+p_2)/y
y_b = x_b*p_b/P
y_t = x_t*p_t/P
print " Vapour pressure of the mixture in the gaseous phase is %f torr"%(P)
print " Mole fraction of the benzene in the vapour phase is %f"%(y_b)
print " Mole fraction of the toluene in the vapour phase is %f"%(y_t)
import math
T = 20. #[C]
x_benzene = 1.00
p_i = 75.2 #[torr] vapour pressure of the benzene
P = 760. #[torr] Pressure of the atmosphere
y_benzene = (x_benzene*p_i)/P
print " Mole fraction of the benzene in air that is saturated with benzene is %0.1f"%(y_benzene)
import math
P = 760. #[mm Hg]
x_b = 0.8 # Mole fraction of benzene in liquid phase
x_t = 0.2 # Mole fraction of toluene in liquid phase
A_b = 6.90565
B_b = 1211.003
C_b = 220.79
A_t = 6.95334
B_t = 1343.943
C_t = 219.337
T = 82. #[C]
err = 1.
while err > 10**(-3):
p_b = 10**(6.90565 - 1211.003/(T + 220.79))
p_t = 10**(6.95334 - 1343.943/(T + 219.337))
y_b = x_b*p_b/P
y_t = x_t*p_t/P
err = abs((y_b + y_t) - 1)
T = T + 0.01
print " The temperature at which the given benzene-toluene mixture will have vapor pressure of 1 atm is %0.3f deg C"%(T)
from numpy import *
import math
V = 0.25 #[L] Volume of water
T_1 = 0. #[C] Initial temperature of water
T_2 = 20. #[C] Final temperature of water
x_o = 5.12*10**(-6) # mole fraction of oxygen
x_n = 9.598*10**(-6) # mole fraction of nitrogen
H_o = 2.55*10**(4) #[atm]
H_n = 5.29*10**(4) #[atm]
p_w = 0.006 #[atm]
A = matrix([[0.006, 0, 0, -1, 0, 0],[0, 25500, 0, 0, -1, 0],[0, 0 ,52900, 0, 0, -1],[0, 0, 0, 1, 1, 1],[1, 1, 1, 0, 0, 0],[0, 0, 0, 0, 0.79, -0.21]])
B = matrix([[0],[0],[0],[1],[1],[0]])
X = linalg.inv(A)
X = X*B
M_o_rej = V*( X[1] - x_o )/0.018 #[mole] oxygen
V_o = M_o_rej*24200 #[ml] oxygen
M_n_rej = V*( X[2] - x_n )/0.018 #[mole] nitrogen
V_n = M_n_rej*24200 #[ml]
print " At equilibrium at 20 deg C the rejected amount of oxygen will be %0.2f ml"%(V_o)
print " At equilibrium at 20 deg C the rejected amount of nitrogen will be %0.2f ml"%(V_n)
print " And total amount of the air rejected from the water will be %0.2f ml"%(V_o + V_n)
import math
P_1 = 5. #[atm]
y_n = 0.79 # Mole fraction of nitrogen in atmosphere
P_2 = 1.0 #[atm]
M = 55. #[kg] Mass of the diver
x_w = 0.75 # Fraction of water in human body
T = 37 #[C] Body temperature of the diver
H_n = 10.05*10**(4) # [atm]
M_rej = (M*1000*x_w/18)*( P_1*y_n/H_n - P_2*y_n/H_n) #[mol]
V_n = M_rej*24.2 #[L]
print " Amount of rejected nitrogen will be %0.2f Litre"%(V_n)