Chapter13 Irreversible Process In Liquids

Example 13.1,Page no.51

In [1]:
import math
#initialisation of variables
t=10.0 #min
i=0.1 #amp
M=63.54 #gm moleˆ−1
n=2.0
F=96500 #amp−sec equivˆ−1
Mo=32.0 #g moleˆ−1
T=25.0      #C
R=0.08205   #l−atm degˆ−1 moleˆ−1 
p=740.0
n1=4.0
#CALCULATIONS
m=t*60*i*M/(F*n)
V=t*60*i*Mo*R*(273+T)*760/(F*n1*Mo*p)
#RESULTS
m=round(m,4)
V=round(V,4)
print  'number of grams of copper deposited at cathode=',m,'gram'
print  'volume of oxygen liberated at anode=',V,'lit' 
number of grams of copper deposited at cathode= 0.0198 gram
volume of oxygen liberated at anode= 0.0039 lit

Example 13.2,Page no.52

In [2]:
import math
#initialisation of variables
r=82.4 #ohms
k= 0.002768 #ohmˆ−1
R1= 326 #ohm
#CALCULATIONS
K= r*k
K1= (K/R1)
#RESULTS 
K=round(K,4)
K1=round(K1,4)
print 'cell constant=',K,'cmˆ−1'
print 'specific conductance=',K1,'ohmˆ−1 cmˆ−1'
cell constant= 0.2281 cmˆ−1
specific conductance= 0.0007 ohmˆ−1 cmˆ−1

Example 13.3,Page no.52

In [3]:
import math
#initialisation of variables
C= 0.005 #N 
k= 6.997*10** -4 #ohmˆ−1 cmˆ−1 
#CALCULATIONS 
A= 1000*k/C 
#RESULTS
print 'equivalent conductance=',A,'cmˆ2 equivˆ−1 ohmˆ−1'
equivalent conductance= 139.94 cmˆ2 equivˆ−1 ohmˆ−1

Example 13.4,Page no.52

In [4]:
import math
#initialisation of variables
AHcl= 426.1 #cmˆ2 equivˆ−1 ohmˆ−1 
ANaC2H3O2= 91 #cmˆ2 equivˆ−1 ohmˆ−1 
ANaCl= 126.5 #cmˆ2 equivˆ−1 ohmˆ−1 
#CALCULATIONS 
AHC2H3O2= AHcl+ANaC2H3O2 -ANaCl 
#RESULTS
print 'equivalent conductance of acetic acid=',AHC2H3O2,'cmˆ2 equivˆ−1 ohmˆ−1'
equivalent conductance of acetic acid= 390.6 cmˆ2 equivˆ−1 ohmˆ−1

Example 13.5,Page no.53

In [16]:
import math
#initialisation of variables
Ke=48.15 
Ki=390.6 
c=0.001028 #N 
#CALCULATIONS 
a=Ke/Ki
K=a**2*c/(1-a) 
#RESULTS
K=format(K, '.7f')
print 'ionisation constant=',K
ionisation constant= 0.0000178

Example 13.6,Page no.53

In [6]:
import math
#initialisation of variables
i=0.00521 #amp
A=0.23 #cmˆ2
k=0.0129 #ohmˆ−1 cmˆ−1
t=67 #min
l=4.64 #cm
#CALCULATIONS
r=i/(A*k) 
uK=l/(t*60*r) 
#RESULTS
r=round(R,4)
uK=round(uK,4)
print 'electrical field strength=',r,'volts cmˆ−1'
print 'mobility of potassium ion=',uK,'cmˆ2 volt ˆ−1 cmˆ−1'
electrical field strength= 0.082 volts cmˆ−1
mobility of potassium ion= 0.0007 cmˆ2 volt ˆ−1 cmˆ−1

Example 13.7,Page no.54

In [7]:
import math
#initialisation of variables
C=0.1 #N 
F=96500 # coloumbs 
mna=42.6*10** -5 #cmˆ2 volt secˆ−1 
mcl=68*10**-5 # cmˆ2 c o l t secˆ−1 
#CALCULATIONS 
k=F*(mna+mcl)*C/1000 
#RESULTS
k=round(k,4)
print 'specific conductance of sodium chloride=',k,' ohmˆ−1 cmˆ−1'
specific conductance of sodium chloride= 0.0107  ohmˆ−1 cmˆ−1

Example 13.8,Page no.54

In [8]:
import math
#initialisation of variables
V=4.9   #faradayˆ−1 
c=0.1  #N 
#CALCULATIONS 
TK=V*c 
Tcl=1-TK 
#RESULTS
print 'transference number of chlorine=',Tcl
transference number of chlorine= 0.51

Example 13.9,Page no.55

In [9]:
import math
#initialisation of variables
Mc=63.54 #gms
n=2.0
mc=0.3 #gms
mc1=1.43
mc2=1.2140
#CALCULATIONS
Me=Mc/n 
Tc=((mc/Me)-((mc1 -mc2)/Me))/(mc/Me)
Ta=1-Tc
#RESULTS
print 'copper transference number=',Ta
copper transference number= 0.72

Example 13.10,Page no.55

In [10]:
import math
#initialisation of variables
Tn=0.820
Tn1=0.450
A=426.1
A1=91
#CALCULATIONS
l=Tn*A
l1=Tn1*A1 
L=l+l1 
#RESULTS 
print 'A0 for acetic acid=',L
A0 for acetic acid= 390.352

Example 13.11,Page no.56

In [17]:
import math
#initialisation of variables
T=25.0 #C
n=2.0
F=96500.0 # coloumbs
R=8.316 #J moleˆ−1 Kˆ−1
a=76.2*10 -5
a1=79*10**-5
A=155.2*10** -5 
#CALCULATIONS 
D0=n*a*a1*R*(273+T)*10**-6/(F*A)
#RESULTS
print 'limiting diffusion cooeficient=',format(D0, '.8f'),'cmˆ2 secˆ−1'
limiting diffusion cooeficient= 0.00001979 cmˆ2 secˆ−1