Chapter18 Spectroscopy

Example 18.1, Page no.69

In [4]:
import math
#initialisation of variables
l=3000 #A
h=6.62*10** -27 # erg sec
c=3*10**10 #cm/ sec
N=6*10**23 
#CALCULATIONS
E=h*c/(l*10**-8)
E1=E*N/(4.18*10**7) 
#RESULTS
E1=E1+276
E1=E1/10**3
E1=round(E1,1)
print 'energy in ergs =',E1,'K cal moleˆ−1'
energy in ergs = 95.3 K cal moleˆ−1

Example 18.2, Page no.69

In [2]:
import math
#initialisation of variables
E=95300 # cal moleˆ−1 
l=3000 #A
e=23060 # cal moleˆ−1 evˆ−1 
#CALCULATIONS 
e1=E/e 
#RESULTS
e1=round(e1,3)
print 'energy in electron =',e1,'electron volts'
energy in electron = 4.0 electron volts

Example 18.3, Page no.70

In [10]:
import math
#initialisation of variables
p=19.2  # percent
b=1 #cm
c=5*10**-4 #mole l ˆ−1
m=1.75*10** -4 #M
#CALCULATIONS
As=math.log10 (100/p)
am=As/(b*c) 
r=100/10**(am*m) 
#RESULTS 
r=round(r,1)
print 'perentage transmmitancy=',r,'percent'
perentage transmmitancy= 56.1 percent

Example 18.4, Page no.70

In [4]:
import math
#initialisation of variables
a=193 #moleˆ−1 cmˆ−1 
b=2 #cm 
c=1.55*10** -3 #mole l ˆ−1 
#CALCULATIONS 
r=100/10**(a*b*c) 
#RESULTS 
r=round(r,3)
print 'perentage =',r,'percent'
perentage = 25.217 percent

Example 18.5, Page no.71

In [3]:
import math
#initialisation of variables
m=1.008 #gms
m1=36.98 #gm
N=6*10**23 # molecules
r=1.275*10** -8 #cm
#CALCULATIONS
u=m*m1/(N*(m+m1))
I=u*r**2 
#RESULTS 
u=u*10**24
u=round(u,2)
I=I*10**40
I=round(I,1)
print 'reduced mass =',u,'*10**-24 g'
print 'moment of inertia =',I,'* 10**-40 g cmˆ2'
reduced mass = 1.64 *10**-24 g
moment of inertia = 2.7 * 10**-40 g cmˆ2

Example 18.6, Page no.71

In [6]:
import math
#initialisation of variables
from math import pi
h=6.625*10**-27 # erg sec 
c= 3*10**10 #cm secˆ−1 
k= 2.647*10** -40 #gm cmˆ2 
#CALCULATIONS 
v=h/(4*pi**2*k*c) 
#RESULTS
v=round(v,3)
print 'frequency =',v,'cmˆ−1'
frequency = 21.133 cmˆ−1

Example 18.7, Page no.71

In [7]:
import math
#initialisation of variables
v=8.867*10**13 # secˆ−1 
u=1.628*10**-24 #gms 
#CALCULATIONS 
k=(pi*2*v)**2*u 
#RESULTS 
k=round(k,2)
print 'force constant =',k,'dyne cmˆ−1'
force constant = 505321.24 dyne cmˆ−1

Example 18.8, Page no.72

In [8]:
import math
#initialisation of variables
e=23.06 # kcal moleˆ−1
E=4.476 # ev
h=6.627*10** -27 # ergs sec
c=3*10**10 #cm/ sec
v=4395 #cmˆ−1
e1=8060 # ev
N=6*10**23 
#CALCULATIONS
D=E*e+(h*c*N*v/(2*10**3*4.184*10**7))
D1=E*e1+(v/2)
D=round(D,2)
#RESULTS
print 'dissociation energy =',D,'kcal moleˆ−1'
print 'dissociation energy =',D1+26,'cmˆ−1'
dissociation energy = 109.48 kcal moleˆ−1
dissociation energy = 38299.56 cmˆ−1