#importing modules
import math
from __future__ import division
#Variable declaration
r=6750*10**3; #radius of earth(m)
#let x=4*pi*epsilon0
x=1/(9*10**9);
#Calculation
C=x*r; #capacitance(F)
C=C*10**6; #capacitance(micro F)
#Result
print "capacitance is",C,"micro F"
#importing modules
import math
from __future__ import division
#Variable declaration
C1=20*10**-6; #capacitance(F)
V1=500; #potential(V)
C2=10*10**-6; #capacitance(F)
V2=200; #potential(V)
#Calculation
q1=C1*V1; #charge on 1st capacitor(C)
q2=C2*V2; #charge on 2nd capacitor(C)
C=C1+C2; #resultant capacitance(C)
V=(q1+q2)/C; #combined potential(V)
#Result
print "combined potential is",V,"V"
#importing modules
import math
from __future__ import division
#Variable declaration
Cp=5; #resultant capacitance in parallel(micro F)
Cs=1.2; #resultant capacitance in series(micro F)
#Calculation
C1C2=Cp*Cs; #product of capacitance(micro F)
C1_C2=math.sqrt((Cp**2)-(4*C1C2)); #difference of capacitance(micro F)
twoC1=Cp+C1_C2;
C1=twoC1/2;
twoC2=Cp-C1_C2;
C2=twoC2/2;
#Result
print "values of capacitors are",C1,"micro F and",C2,"micro F"
#importing modules
import math
from __future__ import division
#Variable declaration
C=0.2*10**-6; #capacitance(F)
V=2; #potential(V)
#Calculation
U=(1/2)*C*(V**2); #energy stored(J)
#Result
print "energy stored is",U,"J"
#importing modules
import math
from __future__ import division
#Variable declaration
A=1; #area of plates(m**2)
k=7; #dielectric constant
d=0.01*10**-2; #distance between plates(m)
V=300; #potential(V)
epsilon0=8.85*10**-12; #dielectric permittivity of free space
#Calculation
C=k*epsilon0*A/d; #capacitance(F)
E=(1/2)*C*(V**2); #energy stored in capacitor(J)
#Result
print "energy stored in capacitor is",round(E*10**3,3),"*10**-3 J"
#importing modules
import math
from __future__ import division
#Variable declaration
A=2; #area(m**2)
d=1*10**-2; #distance(m)
V0=6000; #potential(V)
V=2000; #potential(V)
epsilon0=8.85*10**-12; #dielectric permittivity of free space
#Calculation
C0=epsilon0*A/d; #capacitance when there is no dielectric(F)
Q=C0*V0; #charge on each plate(C)
C=Q/V; #capacitance when there is dielectric(F)
k=C/C0; #dielectric constant
E0=V0/d; #electric field intensity with air medium(V/m)
E=V/d; #electric field intensity with dielectric(V/m)
#Result
print "capacitance when there is no dielectric is",C0*10**9,"nF"
print "charge on each plate is",Q,"C"
print "capacitance when there is dielectric is",C*10**9,"nF"
print "dielectric constant is",k
print "electric field intensity with air medium is",E0/10**5,"*10**5 V/m"
print "electric field intensity with dielectric is",E/10**5,"*10**5 V/m"
#importing modules
import math
from __future__ import division
#Variable declaration
k=5.4; #dielectric constant
E=10**6; #electric field intensity(V/m)
A=50*10**-4; #area(m**2)
epsilon0=8.85*10**-12; #dielectric permittivity of free space
d=5*10**-3; #distance(m)
#Calculation
u=(1/2)*k*epsilon0*(E**2); #energy density(J/m**3)
#Result
print "energy density is",u,"J/m**3"