import math
#Initialization of variables
dw = 1000. #density of water - kg/m**3
muw = 0.001 #viscosity of water - N s /m**2
da = 1.225 #density of air - kg/m**3
mua = 18.*10**-6 #viscosity of air - N s /m**2
lr = 1./10
#calculations
dr = da/dw
mur = mua/muw
vr = mur/dr
velocity = vr/lr
discharge = lr*vr
pressure = mur**2 /(dr*lr**2)
force = mur**2 /dr
#results
print "Scale ratio for velocity = %.f "%(velocity)
print "Scale ratio for discharge = %.2f "%(discharge)
print "Scale ratio for pressure = %.1f "%(pressure)
print "Scale ratio for force = %.3f "%(force)
import math
#Initialization of variables
dr = 1000.
mur = 100. #times
lr = 1./10 #prototype size
dpm = 60. #kN/m**2
#calculations
Vr = mur/dr/lr
dpr = dr*Vr**2
dpp = dpm/dpr
#results
print "Pressure drop in prototype = %d N/m**2"%(dpp*10**3)
import math
#Initialization of variables
lr = 1./25
Tp = 6. #sec
dr = 1./1.025
Fm = 70. #N
#calculations
Tr = lr**(0.5)
Tm = Tr*Tp
Fr = dr*lr**3
Fp = Fm/Fr
#results
print "Wave period = %.1f sec"%(Tm)
print "Force = %.3f kN"%(Fp/1000)
import math
#Initialization of variables
lr = 1./10 #scale ratio
Vp = 10. #speed - knots
Fm = 12. #tension - N
#calculations
Vm = Vp*math.sqrt(lr)
Fp = Fm/lr**3
#results
print "force = %.1f kN"%(Fp/1000)
import math
#Initialization of variables
lr = 1./7200
#calculations
Tr = 60./(12*3600)
yr = (lr/Tr)**2
#results
print "vertical scale to be adopted is 1 in %d"%(1/yr)