from __future__ import division
import math
#Variable declaration:
d = 200 #Spacing of conductors(cm)
r = 1.2/2 #Radius of conductor(cm)
#Calculation:
L = 10**-7*(1+4*math.log(d/r))*10**3 #Loop inductance per m length of the line(H)
#Result:
print " The loop inductance per km of the line is",round(L*1000,3),"mH"
from __future__ import division
import math
#Variable declaration:
d = 300 #Spacing of conductors(cm)
r = 1 #Radius of conductor(cm)
u1 = 1 #relative permeability of copper
u2 = 100 #relative permeability of steel
#Calculation:
#(i) With copper conductors,
Lc = 10**-7*(u1+4*math.log(d/r))*10**3 #Loop inductance/km
#(ii) With steel conductors,
Ls = 10**-7*(u2+4*math.log(d/r))*10**3 ##Loop inductance/km
#Result:
print "The loop inductance per km length of the line are:"
print "(i) for copper, Lc",round(Lc*1000,2),"mH and"
print "(ii) for steel line, Ls =",round(Ls*1000,2),"mH"
from __future__ import division
import math
#Variable declaration:
d = 200 #cm
r = 0.62 #conductor radius(cm)
#Calculation:
L = 10**-7*(0.5+2*math.log(d/r))*10**3 #Inductance/phase/km
#Result:
print "The inductance per km of a 3-ph transmission line is",round(L*10**3,1),"mH"
from __future__ import division
import math
#Variable declaration:
D12 = 2 #m
D23 = 2.5 #m
D13 = 4.5 #m
r = 0.62 #m
#Calculation:
Deq = (D12*D23*D13)**(1/3)*100 #Equivalent equilateral spacing(cm)
L = 10**-7*(0.5+2*math.log(Deq/r))*10**3
#Result:
print "The inductance per km of the line is",round(L*1000,3),"mH"
from __future__ import division
import math
#Variable declaration:
r = 1.25 #cm
D12 = 2 #m
D23 = 2 #m
D13 = 4 #m
#Calculation:
Deq = (D12*D23*D13)**(1/3)*100 #Equivalent equilateral spacing(m)
L = 10**-7*(0.5+2*math.log(Deq/r))*10**3
#Result:
print "The inductance per km of the line is",round(L*1000,2),"mH"
from __future__ import division
import math
#Variable declaration:
r = 0.5 #radius of conductor(m)
Dab = 25 #cm
Daa1 = 100 #cm
Dbb1 = 100 #cm
Dab1 = 103 #cm
Da1b = 103 #cm
Da1b1 = 25 #cm
#Calculation:
GMR = 0.7788*r #G.M.R. of conductor(cm)
Ds = (GMR*Daa1)**(1/2) #Self G.M.D. of aa1 combination(cm)
Dm = (Dab*Dab1*Da1b*Da1b1)**(1/4) #Mutual G.M.D. between a and b(cm)
L1 = 2*10**-7*math.log(Dm/Ds) #Loop inductance per conductor per m(H)
L = 2*L1*1000
#Result:
print "The inductance per km of the line is",round(L*1000,2),"mH"
from __future__ import division
import math
#Variable declaration:
r = 1.3 #conuctor radius(cm)
Dab = 3 #m
Dab1 = 6.7 #m
Da1b = 6.7 #m
Da1b1 = 3 #m
Daa1 = 8.48 #m
Da1a = 8.48 #m
Dbb1 = 6 #m
Db1b = 6 #m
Dca = 6 #m
Dc1a = 6 #m
Dca1 = 6 #m
Dc1a1 = 6 #m
#Calculation:
GMR = 1.3*0.7788/100 #m
Daa = GMR
Da1a1 = GMR
Dbb = GMR
Db1b1 = GMR
Ds1 = (Daa*Daa1*Da1a1*Da1a)**(1/4) #m
Ds2 = (Dbb*Dbb1*Db1b1*Db1b)**(1/4) #m
Ds = (Ds1*Ds2*Ds1)**(1/3) #m
DAB = (Dab*Dab1*Da1b*Da1b1)**(1/4) #m
DBC = DAB
DCA = (Dca*Dc1a*Dca1*Dc1a1)**(1/4) #m
Dm = (DAB*DBC*DCA)**(1/3) #Equivalent mutual G.M.D(m)
L1 = 2*10**-7*math.log(Dm/Ds) #Loop inductance per conductor per m(H)
L = L1*1000
#Result:
print "The inductance per km of the line is",round(L*1000,2),"mH"
from __future__ import division
import math
#Variable Declaration:
r = 0.75 #conductor radius(cm)
Db1b = 5.5 #m
Dca = 6 #m
Dca1 = 4 #m
Dc1a = 4 #m
Dc1a1 = 6 #m
#Calculation:
GMR = 0.7788*r #m
Dab = (3**2+0.75**2)**0.5 #m
Dab1 = (3**2+4.75**2)**0.5 #m
Daa1 = (6**2+4**2)**0.5 #m
Daa = GMR/100 #m
Da1a1 = Daa #m
Da1a = Daa1 #m
Dbb = GMR/100 #m
Dbb1 = 5.5 #m
Db1b1 = Dbb #m
Ds1 = (Daa*Daa1*Da1a1*Da1a)**(1/4) #m
Ds2 = (Dbb*Dbb1*Db1b1*Db1b)**(1/4) #m
Ds3 = Ds1
Ds = (Ds1*Ds2*Ds3)**(1/3) #Equivalent self G.M.D. of one phase(m)
DAB = (Dab*Dab1*Da1b*Da1b1)**(1/4) #m
DCA = (Dca*Dca1*Dc1a*Dc1a1)**(1/4) #m
DBC = DAB #m
Dm = (DAB*DBC*DCA)**(1/3) #Equivalent mutual G.M.D.(m)
L1 = 2*10**-7*math.log(Dm/Ds) #Loop inductance per conductor per m(H)
L = L1*1000
#Result:
print "The inductance per km of the line is",round(L*1000,3),"mH"
from __future__ import division
import math
#Variable Declaration:
r = 5.3/100 #conductor radius(m)
#Calculation:
GMR = 0.7788*r #m
DAA = GMR #m
DAA1 = 24 #m
DA1A1 = DAA #m
DA1A = 24 #m
DBB = GMR #m
DBB1 = 24 #m
DB1B1 = DBB #m
DB1B = 24 #m
Ds1 = (DAA*DAA1*DA1A1*DA1A)**(1/4) #m
Ds2 = (DBB*DBB1*DB1B1*DB1B)**(1/4) #m
#Similarly:
Ds3 = 0.995 #m
Ds = (Ds1*Ds2*Ds3)**(1/3) #Equivalent self-G.M.D. of one phase(m)
#DAB = (DAB × DAB′ × DA′Β × DA′B′)**1/4
DAB = (8*32*16*8)**(1/4) #m
DBC = DAB #m
#DCA = (DCA × DCA′ × DC′A ×DC′A′)1/4 #m
DCA = (16*8*40*16)**(1/4) #m
Dm = (DAB*DBC*DCA)**(1/3) #m
L = 2*10**-7*math.log(Dm/Ds) #Loop inductance per conductor per m(H)
#Result:
print "The inductance per m of the line is",round(L*10**7,2),"* 10**-7 H/m"
from __future__ import division
import math
#Variable Declaration:
r = 1 #consuctor radius(cm)
#Calculation:
#Mutual G.M.D., Dm = (Dab*Dab'*Da'b*Da'b')**(1/4)
Dm = (120*140*100*120)**(1/4) #m
#Self G.M.D., Ds = (Daa*Daa'*Da'a'*Da'a)**(1/4)
#Daa = Da'a' = 0.7788 cm; Daa' = Da'a = 20 cm
Ds = (0.7788*20*0.7788*20)**(1/4) #cm
L = 4*10**-4*math.log(Dm/Ds) #H/km
#Result:
print "The total inductance of the line per km is",round(L*1000,2),"mH/km"
from __future__ import division
import math
#Variable declaration:
r = 1 #conductor radius(cm)
d = 300 #conductor spacing(cm)
e = 8.854*10**-12 #permitivity of free space(F/m)
#Calculation:
C = math.pi*e/math.log(d/r) #F/m
#Result:
print "Capacitance of the line per km is",round(C*10**11,4),"* 10**-2 uF/km"
from __future__ import division
import math
#Variable declaration:
r = 0.625 #conductor radius(cm)
d = 200 #conductor spacing(cm)
e = 8.854*10**-12 #permitivity of free space(F/m)
#Calculation:
C = 2*math.pi*e/math.log(d/r) #F/m
#Result:
print "Capacitance of the line per km is",round(C*10**9,4)," uF/km"
from __future__ import division
import math
#Variable Declaration:
d1 = 2 #m
d2 = 2.5 #m
d3 = 4.5 #m
r = 0.625 #conductor raius(cm)
l = 100 #line length(km)
Vl = 66000 #line voltage(V)
f = 50 #frequency of current(Hz)
e = 8.854*10**-12 #permitivity of free space(F/m)
#Calculation:
d = (d1*d2*d3)**(1/3)*100 #cm
#(i)Line to neutral capacitance,
C1 = 2*math.pi*e/math.log(d/r)*10**9 #uF/km
C11 = C1*100 #uF
#(ii)Charging current per phase,
Ic = Vl*2*math.pi*f*C11*10**-6/(3**0.5) #A
#Result:
print "Capacitance per phase is",round(C11,2),"uF"
print "Charging current per phase is",round(Ic,1),"A"
from __future__ import division
import math
#Variable declaration:
r = 1 #conductor radius(cm)
d = 250 #equilateral conductor spacing(cm)
e = 8.854*10**-12 #permitivity of free space(F/m)
#Calculation:
C = 2*math.pi*e/math.log(d/r)*10**9 #uF/km
C1 = C*100 #F
#Result:
print "Capacitance of the line per km is",round(C1,4),"uF/phase"
from __future__ import division
import math
#Variable Declaration:
d1 = 4 #m
d2 = 4 #m
d3 = 8 #m
r = 1 #conductor raius(cm)
l = 100 #line length(km)
Vl = 132000 #line voltage(V)
f = 50 #frequency of current(Hz)
e = 8.854*10**-12 #permitivity of free space(F/m)
#Calculation:
Deq = (d1*d2*d3)**(1/3)*100 #cm
C = 2*math.pi*e/math.log(Deq/r)*10**9 #uF/km
C1 = C*100 #uF
Ic = Vl*2*math.pi*f*C1*10**-6/(3**0.5) #A
#Result:
print "Charging current per phase is",round(Ic,2),"A"