Chapter 5 : Flow measurement in open channel

example 5.1 page no : 83

In [1]:
import math 

# Initialization of Variable
rho = 999.7;
g = 9.81;
mu = 1.308/1000;
s = 1./6950;
b = 0.65;
h = 32.6/100;
n = 0.016;

#calculation
A = b*h;
P = b+2*h;
m = A/P;
u = s**.5*m**(2./3)/n;
Q = A*u

print "volumetric flow rate (m**3/s): %.4f"%Q
C = u/m**0.5/s**0.5;
print "chezy coefficient (m**0.5/s): %.4f"%C
a = -m*rho*g*s/mu            #delu/dely
print "velocity gradient in the channel (s**-1): %.4f"%a
volumetric flow rate (m**3/s): 0.0474
chezy coefficient (m**0.5/s): 46.1814
velocity gradient in the channel (s**-1): -175.5764

example 5.2 page no : 85

In [2]:
from scipy.optimize import fsolve 
import math 

# Initialization of Variable
Q = 0.885
pi = 3.1428
s = 1./960
s = round(s*1000000)/1000000.
b = 1.36
n = 0.014
theta = 55.*pi/180.

#calculation

def flow(x):
    a = (x*(b+x/math.tan(theta)))/(b+2*x/math.sin(theta))
    y = a**(2./3)*s**(1./2)*(x*(b+x/math.tan(theta)))/n-Q
    return y
x = fsolve(flow,0.1)

print "depth of water in (m): %.4f"%x[0]
depth of water in (m): 0.4813

example 5.3 page no : 86

In [4]:
from scipy.optimize import fsolve 
import math 
from numpy import *

# Initialization of Variable
n = 0.011
h = 0.12
Q = 25./10000.

#calculation
def f(x): 
	 return 1./x**2-1
	 
x = fsolve(f,0.1)
theta = 2.*arctan(x)
A = h*2*h/math.tan(theta/2)/2.
P = 2.*h*math.sqrt(2.)
s = Q**2.*n**2.*P**(4./3)/A**(10./3)
print "the slope of channel in (radians): %f"%s
the slope of channel in (radians): 0.000246

example 5.4 pageno : 88

In [5]:
from scipy.optimize import fsolve 
import math 

# Initialization of Variable

#part1
#maximizing eqution in theta & get a function
def theta(x):
    return (x-.5*math.sin(2.*x))/2/x**2.-(1-math.cos(2.*x))/2/x

x = fsolve(theta,2.2)
x = round(x*1000.)/1000.
a = (1-math.cos(x))/2.
print "velocity will be maximum when stream depth in times of diameter is %.3f"%(a)

#part2
#maximizing eqution in theta & get a function
def theta2(x):
    return 3*(x-.5*math.sin(2*x))**2*(1.-math.cos(2.*x))/2./x-(x-.5*math.sin(2.*x))**3./2./x**2    

x1 = fsolve(theta2,2.2)
x1 = round(x1*1000)/1000.
a = (1-math.cos(x1))/2.

print "vlumetric flow will be maximum when stream depth in times of diameter is %.3f"%(a)

#part3
r = 1.
A = 1.*x-0.5*math.sin(2*x)
s = 0.35*3.14/180
P = 2.*x*r
C = 78.6
u = C*(A/P)**0.5*s**0.5
print "maximum velocity of obtained fluid (m/s): %.4f"%u

#part4
print "maximum flow rate obtained at angle in (radians): %.4f"%x1
velocity will be maximum when stream depth in times of diameter is 0.813
vlumetric flow will be maximum when stream depth in times of diameter is 0.950
maximum velocity of obtained fluid (m/s): 4.7913
maximum flow rate obtained at angle in (radians): 2.6890

example 5.5 page no : 91

In [6]:
from scipy.optimize import fsolve 
import math 
import numpy

#example 5.5 
# Initialization of Variable
g = 9.81
h = 28./100
Cd = 0.62
B = 46./100
Q = 0.355
n = 2.          #from francis formula

#calcualtion

#part1
u = math.sqrt(2*g*h)
print "velocity of fluid (m/s): %.4f"%u

#part2a
H = (3.*Q/2./Cd/B/(2.*g)**0.5)**(2./3)

print "fluid depth over weir in (m): %.4f"%H

#part2b
#using francis formula
def root(x):
    return Q-1.84*(B-0.1*n*x)*x**1.5

x = fsolve(root,0.2)
print "fluid depth over weir in if SI units uesd in (m): %.4f"%x

#part3
H = 18.5/100
Q = 22./1000
a = 15.*Q/8/Cd/(2*g)**0.5/H**2.5
theta = 2*numpy.arctan(a)
print "base angle of the notch of weir (degrees) %.4f"%(theta*180/3.14)
velocity of fluid (m/s): 2.3438
fluid depth over weir in (m): 0.5622
fluid depth over weir in if SI units uesd in (m): 0.7196
base angle of the notch of weir (degrees) 91.2010

example 5.6 pageno : 93

In [7]:
import math 
from numpy import poly1d
#from scipy.optimize import root
from numpy import *
# Initialization of Variable

Q = 0.675
B = 1.65
D = 19.5/100
g = 9.81

#caculation
u = Q/B/D
u = round(u*1000.)/1000.
E = D+u**2./2./g
y = poly1d([1,-E, 0, 8.53/1000],False)
#y = poly1d([8.53/1000, 0, -E, 1],False)
x = roots(y)
print "alternative depth in (m) %.4f"%x[0]
print "It is shooting flow"
Dc = 2./3*E
Qmax = B*(g*Dc**3)**0.5
print "maximum volumetric flow (m**3/s) %.4f"%Qmax
Fr = u/math.sqrt(g*D)
print "Froude no. %.4f"%Fr
a = (E-D)/E
print "%% of kinetic energy in initial system %.4f"%(a*100)
b = (E-x[0])/E
print "%% of kinetic energy in final system %.4f"%(b*100)
alternative depth in (m) 0.3495
It is shooting flow
maximum volumetric flow (m**3/s) 0.7639
Froude no. 1.5169
% of kinetic energy in initial system 53.4987
% of kinetic energy in final system 16.6510

example 5.7 page no : 96

In [8]:
import math 
from numpy import *

# Initialization of Variable

G = 338.         #mass flow rate
rho = 998.
q = G/rho
E = 0.48
n = 0.015
g = 9.81
B = 0.4
y = poly1d([1, -E, 0 ,5.85/1000 ],False)
x = roots(y)
print "alternate depths (m): %.4f  %.4f"%(x[0],x[1])
s = (G*n/rho/x[1]/(B*x[1]/(B+2*x[1]))**(2./3))**2
print "slode when depth is 12.9cm %.4f"%s
s = (G*n/rho/x[0]/(B*x[0]/(B+2*x[0]))**(2./3))**2
print "slode when depth is 45.1cm %.4f"%s
alternate depths (m): 0.4513  0.1291
slode when depth is 12.9cm 0.0461
slode when depth is 45.1cm 0.0018

example 5.8 page no : 97

In [9]:
import math 
from numpy import *

# Initialization of Variable

pi = 3.14
theta = pi/3.
h = 1./math.tan(theta)
B = 0.845
E = 0.375
g = 9.81

#calculation
#part1

#deducing a polynomial(quadratic) in Dc 
a = 5.*h
b = 3.*B-4*h*E
c = -2.*E*B
y = poly1d([a ,b ,c],False)
x = roots(y)

print "critical depth in (m): %.4f"%x[1]

#part2
Ac = x[1]*(B+x[1]*math.tan(theta/2))
Btc = B+x[1]*math.tan(theta/2.)*2
Dcbar = Ac/Btc
uc = math.sqrt(g*Dcbar)
print "critical velocity (m/s): %.4f"%uc

#part3
Qc = Ac*uc
print "Critical volumetric flow (m**3/s): %.4f"%Qc
critical depth in (m): 0.2615
critical velocity (m/s): 1.4925
Critical volumetric flow (m**3/s): 0.3887

example 5.9 page no : 99

In [10]:
import math 

# Initialization of Variable

B2 = 1.60                   #breadth at 2
D2 = (1-0.047)*1.27         #depth at 2
g = 9.81
B1 = 2.95                   #breadth at 1
D1 = 1.27                   #depth at 1
Z = 0.

#calculation
Q = B2*D2*(2*g*(D1-D2-Z)/(1-(B2*D2/B1/D1)**2))**0.5
print "volumetric flow rate over flat topped weir over rectangular\
section in non uniform width(m**3/s) : %.4f"%Q

#next part
B2 = 12.8
D1 = 2.58
Z = 1.25
Q = 1.705*B2*(D1-Z)**1.5
print "volumetric flow rate over flat topped weir over rectangular section in uniform width (m**3/s): %.4f"%Q
volumetric flow rate over flat topped weir over rectangularsection in non uniform width(m**3/s) : 2.4480
volumetric flow rate over flat topped weir over rectangular section in uniform width (m**3/s): 33.4743

example 5.10 page no : 102

In [11]:
from numpy import linspace
from scipy.optimize import fsolve 
import math 

# Initialization of Variable
pi = 3.14
n = 0.022
B = 5.75
s = 0.15*pi/180
Q = 16.8
g = 9.81

def normal(x):
    y = Q-B*x/n*(B*x/(B+2*x))**(2./3)*s**0.5

x = fsolve(normal,1.33)
print "Normal depth in (m) : %.4f"%x[0]
Dc = (Q**2/g/B**2)**(1./3)
print "Critical depth in (m): %.4f"%Dc
delD = .1
D = [1.55,1.65,1.75,1.85,1.95,2.05,2.15,2.25,2.35]
su = 0
for i in range(9):
    delL = delD/s*(1-(Dc/D[i])**3.)/(1.-(x/D[i])**3.33)
    su = su+delL

print "distance in (m) from upstream to that place: %.4f"%su
Normal depth in (m) : 1.3300
Critical depth in (m): 0.9547
distance in (m) from upstream to that place: 456.5757
/usr/lib/python2.7/dist-packages/scipy/optimize/minpack.py:227: RuntimeWarning: The iteration is not making good progress, as measured by the 
  improvement from the last ten iterations.
  warnings.warn(msg, RuntimeWarning)

example 5.11 page no : 105

In [13]:
import math 
from numpy import linspace

# Initialization of Variable

g = 9.81
q = 1.49
pi = 3.14

#calculation

#part1
Dc = (q**2/g)**.333
print "critical depth in (m): %.4f"%Dc

#part2
n = 0.021
su = 1.85*pi/180            #slope upstream
sd = 0.035*pi/180           #slope downstream
Dnu = (n*q/math.sqrt(su))**(3./5)
Dnu = round(Dnu*1000)/1000.
print "normal depth upstream in (m): %.4f"%Dnu
Dnd = (n*q/math.sqrt(sd))**(3./5)
print "normal depth downstream in (m): %.4f"%Dnd

#part3
D2u = -0.5*Dnu*(1-math.sqrt(1+8*q**2/g/Dnu**3))
D2u = round(D2u*1000)/1000.
print "conjugate depth for upstream in (m): %.4f"%D2u
D1d = -0.5*Dnd*(1-math.sqrt(1+8*q**2/g/Dnd**3))
print "conjugate depth for downstream in (m): %.4f"%D1d

#part4
#accurate method
delD = .022
D = linspace(0.987,.022,9)

dis = 0.
for i in range(8):
    delL = delD/su*(1-(Dc/D[i])**3)/(1-(Dnu/D[i])**3.33)
    dis = dis+delL

print "distance in (m) of occurence of jump by accurate method: %.4f"%dis

#not so accurate one
E1 = D2u+q**2./2./g/D2u**2
E2 = Dnd+q**2./2./g/Dnd**2
E2 = round(E2*1000)/1000.
E1 = round(E1*1000)/1000.
ahm = (D2u+Dnd)/2               #av. hyd.raulic mean
afv = .5*(q/D2u+q/Dnd)          #av. fluid velocity
i = (afv*0.021/ahm**(2./3))**2
l = (E2-E1)/(su-i+0.0002)
print "distance in (m) of occurence of jump by not so accurate method: %.4f"%l

#part5
rho = 998.
Eu = Dnu++q**2./2./g/Dnu**2
Eu = round(Eu*1000)/1000.
P = rho*g*q*(Eu-E1)
print "power loss in hydraulic jump per unit width in (kW): %.4f"%(P/1000)
critical depth in (m): 0.6097
normal depth upstream in (m): 0.3500
normal depth downstream in (m): 1.1522
conjugate depth for upstream in (m): 0.9760
conjugate depth for downstream in (m): 0.2752
distance in (m) of occurence of jump by accurate method: 0.6270
distance in (m) of occurence of jump by not so accurate method: 4.4844
power loss in hydraulic jump per unit width in (kW): 2.6112
In [ ]: