#initialisation of variables
d= 40. #lb/ft**2 density of wood
w= 4 #ft wide
h= 6 #ft deep
l= 12 #ft long
#CALCULATIONS
W= w*h*d*l
V= W/64
D= V/(w*l)
#RESULTS
print 'Volume of water print laced = %.f ft**3'%(V)
print ' Depth of immersion = %.2f ft'%(D)
print ' Centre of buoyancy = %.2f ft from base'%(D)
from sympy import Symbol,solve
import math
#initialisation of variables
d= 4. #ft diameter
h= 7. #ft high
W= 2500. #lb weighing
OG= 3.5
OB= 1.55 #ft
#CALCULATIONS
V= W/d**3
D= V/(math.pi*(d/2)**2)
I= math.pi*d**4/64
BM= I/V
BG= OG-OB
T = Symbol("T")
ans = solve( (2500 + T)**2 -(512*math.pi *(8750 - 804)) - 1)
T = ans[1]
#RESULTS
print 'Minimum tension in chain = %d lb'%(T)
import math
#initialisation of variables
W1= 1000. #lb weighing
W2= 100. #lb load
h= 4. #ft height
d= 5. #ft diameter
#CALCULATIONS
V= (W1+W2)/h**3
D= V*h/(d**2*math.pi)
I= d**4*math.pi/h**3
BM= I/V
x= (BM+(D/2)-(W1*(h/2)/(W1+W2)))/(W2/(W1+W2))-0.02
C= x-h
#RESULTS
print 'centre of gravity = %.2f ft'%(x)
print ' Hence the gravity of the weight must not be more than above the top of buoy = %.2f ft'%(C)
import math
#initialisation of variables
b= 12. #ft breadth
h1= 3. #ft draught
h2= 1.5 #ft
h3= 5+(2./3) #ft
#CALCULATIONS
I= b**3/12
V= b*h1
bm= I/V
BG= bm+(h1*2/(3*b))
O= math.degrees(math.tan(math.sqrt((h3*2-h1-bm*2)/(bm*2+bm))))
#RESULTS
print ' Volume of body immersed = %.f ft**3'%(V)
print ' BM = %.f ft'%(bm)
print ' BG = %.2f ft'%(BG)
print ' angle of heel = %.2f degrees'%(O)
#The answer is a bit different due to rounding off error in textbook