import math
#initialisation of variables
v= 10.01 #poise velocity
g= 32.2 #ft/sec**2
d= 30.48 #cm
w= 453.6 #gm
#CALCULATIONS
M= round(v*d/w,3)
F= M/g
#RESULTS
print 'Pound in unit of mass = %.3f lb/ft sec absolute units'%(M)
print ' Pound in unit of force = %.4f slugs/ft sec'%(F)
import math
#initialisation of variables
W= 20. #tons/hr oil
l= 1000. #ft long
w= 57. #lb/ft**3 weighs
kv= 0.0205 #ft**2/sec kinematic viscisity
d= 6. #in diameter
g= 32.2 #ft/sec**2
#CALCULATIONS
Q= W*2240/(3600*w)
A= math.pi*(d/12)**2/4
v= Q/A
R= v*(d/12)/kv
n= w*kv/g
P= 32*v*n*l/((d/12)**2*w)
HP= P*2240*W/(3600*500)
#RESULTS
print 'Reynolds number = %.1f '%(R)
print ' H.P required = %.2f hp'%(HP)
#The answer is a bit different due to rounding off error in textbook
import math
#initialisation of variables
n= 0.0067 #poise
l= 10. #ft length
w= 62. #lb/ft**3 density
d= 1. #in
Q= 2. #ft**2/sec
sm= 13.57
k1= 0.003
k2= 0.0725
r= 0.3
g= 32.2 #ft/sec**2
#CALCULATIONS
n1= n*30.48/453.6
v= Q*4/(60*math.pi*(d/12)**2)
RN= v*(d/12)*w/n1
f= k1+(k2/RN**r)
hf= 4*f*l*v**2/(2*g*(d/12))
hl= hf*12/sm
#RESULTS
print 'Head lost in inches of mercury = %.2f in'%(hl)
import math
#initialisation of variables
n= 0.91 #poise
g= 32.2 #ft/sec
N= 300. #r.p.m
t= 0.01 #in
r1= 0.25 #ft
r2= 1./6 #ft
#CALCULATIONS
n1= n*30.48/(454*g)
A= N*2*math.pi/60
t1= t/12
hp= math.pi*A**2*n1*(r1**4-r2**4)/(t1*1100)
#RESULTS
print 'Horse Power lost = %.4f '%(hp)
import math
#initialisation of variables
vw= 0.3 #ft/sec
dw= 1. #in
da= 12. #in
ww= 62.3 #lb/ft**3
wa= 0.075 #lb/ft**3
nw= 0.01 #poise
na= 0.00018 #poise
#CALCULATIONS
va= vw*dw*ww*na/(nw*da*wa)
#RESULTS
print 'critical velocity of air = %.3f ft/sec'%(va)
import math
#initialisation of variables
dm= 0.75 #in
dt= 0.25 #in
dP= 10.4 #lb/in**2
rd= 0.84
w= 62.4 #lb/ft**3
g= 32.2 #ft/sec**2
#CALCULATIONS
v1= math.sqrt(dP*144*g/(rd*w*((dm/dt)**4-1)))
Q= math.pi*dm**2*v1*60*w/(4*144*10)
#RESULTS
print 'Discharge rate = %.1f gal.min'%(Q)