print"\t example 15.1 \t"
print"\t approximate values are mentioned in the book \t"
ts=250;
T1=400;
T2=300;
w=10000; # lb/hr
W=150000; # lb/hr
l=945.3; # Btu/(lb) , table 7
from math import log10
Q=((w)*(l)); # Btu/hr
print"\t total heat required for steam is : Btu/hr \t",Q
C=0.63; # Btu/(lb)*(F)
Q=((W)*(C)*(T1-T2)); # Btu/hr
print"\t total heat required for kerosene is : Btu/hr \t",Q
delt1=T2-ts; #F
delt2=T1-ts; # F
print"\t delt1 is : F \t",delt1
print"\t delt2 is : F \t",delt2
LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1))));
print"\t LMTD is : F \t",LMTD
UD=100;
A=(Q/(UD*LMTD));
print"\t A : ft**2 \t",A
WC=94500; # Btu/F
vl=0.017; # ft**3/lb, from table 7
vv=13.75; # ft**3/lb, from table 7
print"\t By the law of mixtures \t"
# Assume 80 per cent of the outlet fluid is vapor
v2=(0.8*vv)+(.2*vl);
print"\t v2 : ft**3/lb \t",v2
vav=(WC*(v2-vl)/(UD*A))-((WC*(T2-ts)/(l*w))*(vv-vl))+vl;
print"\t vav : ft**3/lb \t",vav
print"\t By the approximate method \t"
vav1=(vl+v2)/(2);
print"\t vav : ft**3/lb \t",vav1
row=62.5;
rowac=(1/vav);
s=(rowac/row);
print"\t actual density : lb/ft**3 \t",rowac
print"\t s : \t",s
rowap=(1/vav1);
s=(rowap/row);
print"\t approximate density : lb/ft**3 \t",rowac
print"\t s : \t",round(s,4)
# end
print"\t example 15.2 \t"
print"\t approximate values are mentioned in the book \t"
t1=108; # inlet cold fluid,F
t2=235; # outlet cold fluid,F
Ts=338;
Wp=24700; # lb/hr
Wv=19750; # lb/hr
w=4880; # lb/hr
print"\t 1.for heat balance \t"
Ht1=162; # enthalpy at t1, Btu/lb, fig 9
Ht2=248; # enthalpy at t2, Btu/lb, fig 9
qp=(Wp*(Ht2-Ht1)); # for preheat
print"\t total heat required for preheat of butane is : Btu/hr \t",qp
Ht3=358; # enthalpy of vapour at t2, Btu/lb, fig 9
qv=Wv*(Ht3-Ht2);
print"\t total heat required for vapourisation of butane is : Btu/hr \t",qv
Q=qp+qv;
print"\t total heat required for butane is : Btu/hr \t",Q
print"\t for steam \t"
l=880.6; # Btu/(lb), table 7
Q=((w)*(l)); # Btu/hr
print"\t total heat required for steam is : Btu/hr \t",Q
deltp=158.5; # F, from eq 5.14
deltv=103; # F eq 5.14
Wp1=(qp/deltp);
print"\t Wp1 is : lb/hr \t",Wp1
Wv1=(qv/deltv);
print"\t Wv1 is : lb/hr \t",Wv1
W=(Wp1+Wv1);
print"\t W is : lb/hr \t",W
delt=(Q/W);
print"\t weighted delt is : % F \t",delt
Tc=((Ts)+(Ts))/(2); # caloric temperature of hot fluid,F
print"\t caloric temperature of hot fluid is : F \t",Tc
tc=((t1)+(t2))/(2); # caloric temperature of cold fluid,F
print"\t caloric temperature of cold fluid is : F \t",tc
print"\t hot fluid:inner tube side,steam \t"
Nt=76;
n=2; # number of passes
L=16; #ft
at1=0.594; # flow area,table 10, in**2
at=((Nt*at1)/(144*n)); # total area,ft**2,from eq.7.48
print"\t flow area is : ft**2 \t",at
Gt=(w/(at)); # mass velocity,lb/(hr)*(ft**2)
print"\t mass velocity is : lb/(hr)*(ft**2) \t",Gt
mu1=0.0363; # at 338F, fig 15,lb/(ft)*(hr)
D=0.0725; # ft
Ret=((D)*(Gt)/mu1); # reynolds number
print"\t reynolds number is : \t",Ret
hio=1500; # condensing steam,Btu/(hr)*(ft**2)*(F)
print"\t hio is : Btu/(hr)*(ft**2)*(F) \t",hio
print"\t cold fluid:shell side,butane \t"
print"\t preheating \t"
ID=15.25; # in
C=0.25; # clearance
B=5; # baffle spacing,in
PT=1.25;
As=((ID*C*B)/(144*PT)); # flow area,ft**2
print"\t flow area is : ft**2 \t",As
Gs=(Wp/As); # mass velocity,lb/(hr)*(ft**2)
print"\t mass velocity is : lb/(hr)*(ft**2) \t",Gs
mu2=0.278; # at 172F,lb/(ft)*(hr), from fig.14
De=0.0825; # from fig.28,ft
Res=((De)*(Gs)/mu2); # reynolds number
print"\t reynolds number is : \t",Res
jH=159; # from fig.28
Z=0.12; # Z=k*((c)*(mu1)/k)**(1/3), fig 16
hop=((jH)*(1/De)*(Z)); #using eq.6.15b,Btu/(hr)*(ft**2)*(F)
print"\t individual heat transfer coefficient is : Btu/(hr)*(ft**2)*(F) \t",hop
Up=((hio)*(hop)/(hio+hop)); # clean overall coefficient,eq 6.38,Btu/(hr)*(ft**2)*(F)
print"\t clean overall coefficient for preheating : Btu/(hr)*(ft**2)*(F) \t",Up
Ap=(qp/(Up*deltp));
print"\t clean surface required for preheating : ft**2 \t",Ap
print"\t for vapourisation \t"
mu2=0.242; # at 172F,lb/(ft)*(hr), from fig.14
Res=((De)*(Gs)/mu2); # reynolds number
print"\t reynolds number is : \t",Res
jH=170; # from fig.28
Z=0.115; # Z=k*((c)*(mu1)/k)**(1/3), fig 16
hov=((jH)*(1/De)*(Z)); #using eq.6.15b,Btu/(hr)*(ft**2)*(F)
print"\t individual heat transfer coefficient is : Btu/(hr)*(ft**2)*(F) \t",hov
Uv=((hio)*(hov)/(hio+hov)); # clean overall coefficient,eq 6.38,Btu/(hr)*(ft**2)*(F)
print"\t clean overall coefficient for vapourisation : Btu/(hr)*(ft**2)*(F) \t",Uv
Av=(qv/(Uv*deltv));
print"\t clean surface required for vapourisation : ft**2 \t",Av
Ac=Ap+Av;
print"\t total clean surface : ft**2 \t",Ac
UC=((Up*Ap)+(Uv*Av))/(Ac);
print"\t weighted clean overall coefficient : Btu/(hr)*(ft**2)*(F) \t",UC
A2=0.2618; # actual surface supplied for each tube,ft**2,from table 10
A=(Nt*L*A2); # ft**2
print"\t total surface area is : ft**2 \t",A
UD=((Q)/((A)*(delt)));
print"\t actual design overall coefficient is : Btu/(hr)*(ft**2)*(F) \t",UD
# A total of 170 ft2 are required of which 103 are to be used for vaporization. For the total surface required 318 ft2 will be provided. It can be assumed, then, that the surface provided for vaporization is 193ft**2
# then flux is Q/A=10700, which is with in satisfactory levels.
Rd=((UC-UD)/((UD)*(UC))); # (hr)*(ft**2)*(F)/Btu
print"\t actual Rd is : (hr)*(ft**2)*(F)/Btu \t",Rd
print"\t pressure drop for inner pipe \t"
f=0.000165; # friction factor for reynolds number 62000, using fig.26
s=0.00413;
phyt=1;
delPt=((f*(Gt**2)*(L)*(n))/(5.22*(10**10)*(D)*(s)*(phyt)))/(2); # using eq.7.45,psi
print"\t delPt is : psi \t",round(delPt,2)
print"\t allowable delPa is negligible \t"
print"\t pressure drop for annulus \t"
print"\t preheating \t"
f=0.00145; # friction factor for reynolds number 69200, using fig.29
Lp=(L*Ap/Ac); #ft
print"\t length of preheat zone : ft \t",Lp
N=(12*Lp/B); # number of crosses,using eq.7.43
print"\t number of crosses are : \t",N
s=0.5; # for reynolds number 69200,using fig.6
Ds=1.27; # fig 28
phys=1;
delPsp=((f*(Gs**2)*(Ds)*(N))/(5.22*(10**10)*(De)*(s)*(phys))); # using eq.7.44,psi
print"\t delPsp is : psi \t",delPsp
print"\t vapourisation \t"
f=0.00142;
Lv=9.7; # Lv=L-Lp
Nv=(12*Lv/B); # number of crosses,using eq.7.43
print"\t number of crosses are : \t",Nv
s=0.28;
delPsv=((f*(Gs**2)*(Ds)*(Nv))/(5.22*(10**10)*(De)*(s)*(1))); # using eq 12.47,psi
print"\t delPsv is : psi \t",delPsv
delPS=delPsp+delPsv;
print"\t delPS is : psi \t",round(delPS,2)
print"\t allowable delPa is 5 psi \t"
#end
print"\t example 15.3 \t"
print"\t approximate values are mentioned in the book \t"
ts=400;
T1=575;
T2=475;
W=28100; # lb/hr
w=34700; # lb/hr
print"\t 1.for heat balance \t"
HT1=290; # enthalpy at T1, Btu/lb, fig 11
HT2=385; # enthalpy at T2, Btu/lb, fig 11
Q=(W*(HT2-HT1)); # for preheat
print"\t total heat required for gasoline is : Btu/hr \t",Q
c=0.77; # Btu/(lb), table 7
Q=((w)*(c)*(T1-T2)); # Btu/hr
print"\t total heat required for gasoil is : Btu/hr \t",Q
delt=118; # F eq 5.14
S=75./175.;#((T2-ts)/(T1-ts));
print"\t S is : \t",S
Kc=0.37; # fig 17
Fc=0.42;
Tc=(T2+(0.42*(T1-T2)));
print"\t Tc is : F \t",Tc
print"\t hot fluid:inner tube side,gasoil \t"
Nt=68;
n=6; # number of passes
L=12; #ft
at1=0.546; # flow area,table 10, in**2
at=((Nt*at1)/(144*n)); # total area,ft**2,from eq.7.48
print"\t flow area is : ft**2 \t",at
Gt=(w/(at)); # mass velocity,lb/(hr)*(ft**2)
print"\t mass velocity is : lb/(hr)*(ft**2) \t",Gt
mu1=0.65; # at 517F, fig 14,lb/(ft)*(hr)
D=0.0694; # ft
Ret=((D)*(Gt)/mu1); # reynolds number
print"\t reynolds number is : \t",Ret
jH=220; # from fig.24
Z=0.118; # Z=k*((c)*(mu1)/k)**(1/3), fig 16
Hi=((jH)*(1/D)*(Z)); #hi/phyt, Hi=()using eq.6.15d,Btu/(hr)*(ft**2)*(F)
print"\t individual heat transfer coefficient is : Btu/(hr)*(ft**2)*(F) \t",Hi
Hio=((Hi)*(0.834/1)); #Hio=(hio/phyp), using eq.6.9
print"\t Correct Hi0 to the surface at the OD is : Btu/(hr)*(ft**2)*(F) \t",Hio
# (mu1/muw)**(0.14) is negligible
print"\t cold fluid:shell side,gasoline \t"
ho=300; # assumption
tw=(ts)+(((Hio)/(Hio+ho))*(Tc-ts)); # from eq.5.31
print"\t tw is : F \t",tw
deltw=(tw-ts);
print"\t deltw : F \t",deltw
# from fig 15.11, ho>300
Uc=((Hio)*(ho)/(Hio+ho)); # clean overall coefficient,Btu/(hr)*(ft**2)*(F)
print"\t clean overall coefficient is : Btu/(hr)*(ft**2)*(F) \t",Uc
A2=0.2618; # actual surface supplied for each tube,ft**2,from table 10
A=(Nt*L*A2); # ft**2
print"\t total surface area is : ft**2 \t",A
UD=((Q)/((A)*(delt)));
print"\t actual design overall coefficient is : Btu/(hr)*(ft**2)*(F) \t",UD
# check for max. flux=Q/A=12500.(satisfactory)
Rd=((Uc-UD)/((UD)*(Uc))); # (hr)*(ft**2)*(F)/Btu
print"\t actual Rd is : (hr)*(ft**2)*(F)/Btu \t",Rd
print"\t pressure drop for inner pipe \t"
f=0.00015; # friction factor for reynolds number 85700, using fig.26
s=0.71;
phyt=1;
delPt=((f*(Gt**2)*(L)*(n))/(5.22*(10**10)*(D)*(s)*(phyt))); # using eq.7.45,psi
print"\t delPt is : psi \t",delPt
X1=0.09; # X1=((V**2)/(2*g)), for Gt 1060000,using fig.27
delPr=((4*n*X1)/(s)); # using eq.7.46,psi
print"\t delPr is : psi \t",delPr
delPT=delPt+delPr; # using eq.7.47,psi
print"\t delPT is : psi \t",round(delPT,1)
print"\t allowable delPa is 10psi \t"
print"\t delPs is negligible \t"
#end
print"\t example 15.4\t"
print"\t approximate values are mentioned in the book \t"
t1=315.; # inlet cold fluid,F
t2=335.; # outlet cold fluid,F
T1=525.;
T2=400.;
Wv=29000; # lb/hr
Ws=38500; # lb/hr
w=51000; # lb/hr
from math import log10
print"\t 1.for heat balance \t"
Ht1=238; # enthalpy at t1, Btu/lb, fig 9
Ht2=252; # enthalpy at t2, Btu/lb, fig 9
Ht3=378; # enthalpy of vapour at t2
qv=(Wv*(Ht3-Ht2)); # for preheat
print"\t qv is : Btu/hr \t",qv
qs=Ws*(Ht2-Ht1);
print"\t qs is : Btu/hr \t",qs
Q=qs+qv;
print"\t total heat required for naphtha is : Btu/hr \t",Q
c=0.66; # Btu/(lb)(F)
Q=((w)*(c)*(T1-T2)); # Btu/hr
print"\t total heat required for gasoil is : Btu/hr \t",Q
delt1=T2-t1; #F
delt2=T1-t2; # F
print"\t delt1 is : F \t",delt1
print"\t delt2 is : F \t",delt2
LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1))));
print"\t LMTD is : F \t",LMTD
R=((T1-T2)/(t2-t1));
print"\t R is : \t",R
S=((t2-t1)/(T1-t1));
print"\t S is : \t",S
print"\t FT is 0.97 \t" # from fig 18
delt=(0.97*LMTD); # F
print"\t delt is : F \t",delt
X=((delt1)/(delt2)); # fig 17
print"\t ratio of two local temperature difference is : \t",X
Fc=0.41; # from fig.17
Kc=0.42;
Tc=((T2)+((Fc)*(T1-T2))); # caloric temperature of hot fluid,F
print"\t caloric temperature of hot fluid is : F \t",Tc
tc=((t1)+((Fc)*(t2-t1))); # caloric temperature of cold fluid,F
print"\t caloric temperature of cold fluid is : F \t",tc
print"\t hot fluid:inner tube side,steam \t"
Nt=116;
n=8; # number of passes
L=12; #ft
at1=0.546; # flow area,table 10, in**2
at=((Nt*at1)/(144*n)); # total area,ft**2,from eq.7.48
print"\t flow area is : ft**2 \t",at
Gt=(w/(at)); # mass velocity,lb/(hr)*(ft**2)
print"\t mass velocity is : lb/(hr)*(ft**2) \t",Gt
mu1=1.09; # at 451F, fig 14,lb/(ft)*(hr)
D=0.0695; # ft
Ret=((D)*(Gt)/mu1); # reynolds number
print"\t reynolds number is : \t",Ret
jH=168; # from fig.24
Z=0.142; # Z=k*((c)*(mu1)/k)**(1/3), fig 16
Hi=((jH)*(1/D)*(Z)); #, Hi=(hi/phyt)using eq.6.15d,Btu/(hr)*(ft**2)*(F)
print"\t individual heat transfer coefficient is : Btu/(hr)*(ft**2)*(F) \t",Hi
Hio=((Hi)*(0.834/1)); #Hio=(hio/phyp), using eq.6.9
print"\t Correct Hio to the surface at the OD is : Btu/(hr)*(ft**2)*(F) \t",Hio
print"\t cold fluid:shell side,naphtha \t"
ho1=200; # assumption
tw=(tc)+(((Hio)/(Hio+ho1))*(Tc-tc)); # from eq.5.31, calculation mistake
print"\t tw is : F \t",tw
deltw=(tw-tc);
print"\t deltw : F \t",deltw
# from fig 15.11, hv>300, hs=60
Av=(qv/300);
As=qs/60;
print"\t qv/hv : \t",Av
print"\t qs/hs : \t",As
A1=As+Av;
print"\t A : \t",A1
ho=(Q/A1);
print"\t ho : \t",ho
Uc=((Hio)*(ho)/(Hio+ho)); # clean overall coefficient,Btu/(hr)*(ft**2)*(F)
print"\t clean overall coefficient is : Btu/(hr)*(ft**2)*(F) \t",Uc
A2=0.2618; # actual surface supplied for each tube,ft**2,from table 10
A=(Nt*L*A2); # ft**2
print"\t total surface area is : ft**2 \t",A
UD=((Q)/((A)*(delt)));
print"\t actual design overall coefficient is : Btu/(hr)*(ft**2)*(F) \t",UD
# check for max. flux=Q/A=11500.(satisfactory)
Rd=((Uc-UD)/((UD)*(Uc))); # (hr)*(ft**2)*(F)/Btu
print"\t actual Rd is : (hr)*(ft**2)*(F)/Btu \t",Rd
print"\t pressure drop for inner pipe \t"
f=0.000168; # friction factor for reynolds number 59200, using fig.26
s=0.73;
phyt=1;
delPt=((f*(Gt**2)*(L)*(n))/(5.22*(10**10)*(D)*(s)*(phyt))); # using eq.7.45,psi
print"\t delPt is : psi \t",delPt
X1=0.11; # X1=((V**2)/(2*g)), for Gt 1060000,using fig.27
delPr=((4*n*X1)/(s)); # using eq.7.46,psi
print"\t delPr is : psi \t",delPr
delPT=delPt+delPr; # using eq.7.47,psi
print"\t delPT is : psi \t",round(delPT,1)
print"\t allowable delPa is negligible \t"
print"\t pressure drop for annulus \t"
Af=(3.14*(21.25**2-(116))/8);
print"\t flow area : in**2 \t",Af
As=0.917; # ft**2
p=(3.14*21.25/2)+(3.14*1*116/2)+(21.25)
print"\t wetted perimeter : in \t",p
De=0.186; # ft
Gs=(Ws/(2*As)); # mass velocity,lb/(hr)*(ft**2)
print"\t mass velocity is : lb/(hr)*(ft**2) \t",Gs
mu2=0.435; # at 315F, fig 14,lb/(ft)*(hr)
Res=((De)*(Gs)/mu2); # reynolds number
print"\t reynolds number is : \t",Ret
f=0.00028; # using fig.26
row=0.337; # fig 13.14
# soutlet max=0.071,
s=0.35; # using fig.6
phys=1;
delPs=0.25 #((f*(Gs**2)*(L))/(5.22*(10**10)*(De)*(s)*(phys))); # using eq.7.44,psi
print"\t delPs is : psi \t",delPs
print"\t allowable delPa is 10 psi \t"
#end
print"\t example 15.5\t"
print"\t approximate values are mentioned in the book \t"
W=40800; # lb/hr
w=4570; # lb/hr
from math import log10
print"\t 1.for heat balance \t"
Ht1=241; # enthalpy of liquid at 228F, Btu/lb, fig 9
Ht2=338; # enthalpy of vapourat 228F, Btu/lb, fig 9
Q=(W*(Ht2-Ht1));
print"\t total heat required for butane is : Btu/hr \t",Q
l=868; # Btu/(lb), table 7
Q=((w)*(l)); # Btu/hr
print"\t total heat required for steam is : Btu/hr \t",Q
delt=125; # delt=LMTD, isothermal boiling, eq 5.14
# Tc and tc: Both streams are isuthermal
print"\t trail 1 \t"
A1=((Q)/((12000))); # Q/A1 =12000, first trial should always be taken for the maximum allowable flux
print"\t A1 is : ft**2 \t",A1
a1=0.1963; # ft**2/lin ft
L=16;
N1=(A1/(L*a1)); # table 10
print"\t number of tubes are : \t",N1
N2=109; # assuming one tube passes, 13.25-in ID, from table 9
A2=(N2*L*a1); # ft**2
print"\t total surface area is : ft**2 \t",A2
UD=((Q)/((A2)*(delt)));
print"\t correct design overall coefficient is : Btu/(hr)*(ft**2)*(F) \t",UD
# Assume 4: 1 recirculation ratio
rowv=(58/(359*(688/492)*(14.7/290))); # eq 15.18
print"\t vapour density : lb/ft**3 \t",rowv
Vv=0.44;
Vl=0.0372; # fig 6
W1=4*W;
print"\t weight flow of recirculated liquid : lb/hr \t",W1
VL=W1*Vl;
VV=W*Vv;
print"\t volume of liquid : ft**3 \t",VL
print"\t volume of vapour : ft**3 \t",VV
V=VL+VV;
print"\t total volume out of reboiler : ft**3 \t",V
vo=(V/(W1+W));
print"\t vo is : ft**3/lb \t",vo
Pl=((2.3*16)/(144*(vo-Vl)))*(log10(vo/Vl));
print"\t pressure leg : psi \t",Pl
print"\t frictional resistance \t"
Nt=109;
n=1; # number of passes
at1=0.302; # flow area,table 10, in**2
at=((Nt*at1)/(144*n)); # total area,ft**2,from eq.7.48
print"\t flow area is : ft**2 \t",at
Gt=((W1+W)/(at)); # mass velocity,lb/(hr)*(ft**2)
print"\t mass velocity is : lb/(hr)*(ft**2) \t",Gt
mu1=0.242; # at 228F, fig 14,lb/(ft)*(hr)
D=0.0517; # ft
Ret=((D)*(Gt)/mu1); # reynolds number
print"\t reynolds number is : \t",Ret
f=0.000127; # using fig.26
s=0.285;
phyt=1;
delPt=((f*(Gt**2)*(L)*(n))/(5.22*(10**10)*(D)*(s)*(phyt))); # using eq.7.45,psi
print"\t delPt is : psi \t",round(delPt,2)
P=Pl+delPt;
print"negilgable"
print"\t total resisitance : psi \t",P
F=(16*0.43*62.5/144);
print"\t driving force : psi \t",F
# The resistances are greater than the hydrostatic head can provide; hence the recirculation ratio will be less than 4: 1
print"\t trial 2 \t" # Assume 12'0" tubes and 4:1 recirculation ratio
A1=((Q)/((12000))); # Q/A1 =12000, first trial should always be taken for the maximum allowable flux
print"\t A1 is : ft**2 \t",A1
a1=0.1963; # ft**2/lin ft
L=12;
N1=(A1/(L*a1)); # table 10
print"\t number of tubes are : \t",N1
N2=151; # assuming one tube passes, 15.25-in ID, from table 9
A2=(N2*L*a1); # ft**2
print"\t total surface area is : ft**2 \t",A2
UD=((Q)/((A2)*(delt)));
print"\t correct design overall coefficient is : Btu/(hr)*(ft**2)*(F) \t",UD
Pl=((2.3*12)/(144*(vo-Vl)))*(log10(vo/Vl));
print"\t pressure leg : psi \t",Pl
print"\t frictional resistance \t"
Nt=151;
n=1; # number of passes
at1=0.302; # flow area,table 10, in**2
at=((Nt*at1)/(144*n)); # total area,ft**2,from eq.7.48
print"\t flow area is : ft**2 \t",at
Gt=((W1+W)/(at)); # mass velocity,lb/(hr)*(ft**2)
print"\t mass velocity is : lb/(hr)*(ft**2) \t",Gt
mu1=0.242; # at 228F, fig 14,lb/(ft)*(hr)
D=0.0517; # ft
Ret=((D)*(Gt)/mu1); # reynolds number
print"\t reynolds number is : \t",Ret
f=0.000135; # using fig.26
s=0.285;
phyt=1;
delPt=((f*(Gt**2)*(12)*(n))/(5.22*(10**10)*(D)*(s)*(phyt))); # using eq.7.45,psi
print"\t delPt is : psi \t",delPt
P=Pl+delPt;
print"\t total resisitance : psi \t",P
F=(12*0.43*62.5/144);
print"\t driving force : psi \t",F
# Since the driving force is slightly greater than the resistances, a recirculation ratio better than 4:1 is assured.
print"\t hot fluid : shell side,steam \t"
ho=1500; # condensing steam
print"\t cold fluid:inner tube side, butane \t"
jH=330; # from fig.24
Z=0.115; # Z=k*((c)*(mu1)/k)**(1/3), fig 16
Hi=((jH)*(1/D)*(Z)); #, Hi=(hi/phyt)using eq.6.15d,Btu/(hr)*(ft**2)*(F)
print"\t individual heat transfer coefficient is : Btu/(hr)*(ft**2)*(F) \t",Hi
Hio=((300)*(0.62/0.75)); #Hio=(hio/phyp), using eq.6.9
print"\t Correct Hio to the surface at the OD is : Btu/(hr)*(ft**2)*(F) \t",Hio
Uc=((Hio)*(ho)/(Hio+ho)); # clean overall coefficient,Btu/(hr)*(ft**2)*(F)
print"\t clean overall coefficient is : Btu/(hr)*(ft**2)*(F) \t",Uc
UD=89;
Rd=((Uc-UD)/((UD)*(Uc))); # (hr)*(ft**2)*(F)/Btu
print"\t actual Rd is : (hr)*(ft**2)*(F)/Btu \t",Rd
# end
print"\t example 15.6\t"
print"\t approximate values are mentioned in the book \t"
#20000=WD+WB;
#0.99*WD+(0.05*WB)=(20000*.5);
# solving above two eq. we get WD and WB
WD=9570; # lb/hr
WB=10430; # lb/hr
HBl=108; # fig 3 and 12
HDl=85.8; #fig 3 and 12
HDv=253.8; # fig 3 and 12
HFl=92; # fig 3 and 12
l=153; # fig 3 and 12
QR=((2.54+1)*WD*(HDv))-(2.54*WD*HDl)+(WB*HBl)-(20000*HFl);
print"\t total heat duty : Btu/hr \t",round(QR)
Q=QR/153;
print"\t total heat duty : lb/hr \t",round(Q)
# end
print"\t example 15.7 \t"
print"\t approximate values are mentioned in the book \t"
#Basis: One hour
#20000=WD+WB , material balance
#0.99*WD+(0.05*WB)=(20000*0.5) , Benzene balance
# solving above two eq. we get WD and WB
WD=9570; # lb/hr
WB=10430; # lb/hr
#Compositions and Boiling Points
#Feed
l1 = 10000; #Lb/hr , C6H4
l2 = 10000; #Lb/hr , C7H8
lb = l1+l2; #Lb/hr
print"\ttotal Lb/hr is \t",lb
mo1 = 78.1; #Mol. wt., C6H6
mo2 = 93.1; #Mol. wt , C7H8
mh1 = 128.0; #Mol/hr , C6H6
mh2 = 107.5; #Mol/hr , C7H8
mh = mh1 + mh2; # Mol/hr
print"\ttotal Mol/hr is \t",mh
x1 = mh1/mh;
print"\tx1 of C6H6 is \t",x1
x2 = mh2/mh;
print"\tx1 of C7H8 is \t",x2
x = x1+x2;
print"\tTotal x1 is \t",x
Pp1= 1380; # 214Deg F
Pp2=575; # 214Deg F
xp1 = x1*Pp1;
print"\tx1Pp1 of C6H6 is \t",xp1
xp2 = x2*Pp2;
print"\tx1Pp1 of C7H8 is \t",xp2
sxp = xp1 + xp2;
print"\tTotal x1Pp1 is \t",sxp
y1 = xp1/sxp;
print"\ty1 of C6H6 is \t",y1
y2 = xp2/sxp;
print"\ty1 of C7H8 is \t",y2
y = y1+y2;
print"\tTotal y1 is \t",y
w1 = 0.558; #from eq 15.42
print"\t(WR`/V =((xD - yF)/.(xD - xF))) = mol/mol\t",w1
wD=1;
xD = 0.992;
#V = WR' + WD
# WR'/V = 0.558
#Solving, WR' = (WR' * 0.558) + (0.558 * WD)
Wr = 1.27; # mol reflux/mol distillate
print"\tWR` = %.2f (mol reflux)/(mol distillate)\t",Wr
Wr1 = Wr * 2; # mol/ mol distillate
print"\tAssumed 200 percent of the theoretical minimum reflux as economic\t\tWR = (mol)/(mil distillate)\t",Wr1
In = (wD * xD)/(Wr1 + 1); #intercept for the upper operating line
print"\tThe intercept for the upper operating line = \t",In
p = 13; # From fig. 15.23, connecting the corresponding lines
print"\tConnecting the corresponding line in Fig. 15.23, plates required: \t",p
fp = 7; # From fig. 15.23, connecting the corresponding lines
print"\tFeed plate is th(from top)\t",fp
d=122.5;
tf = Wr1 * d;
print"\tTotal reflux is \t",tf
print"\t\t\t\t\tHeat balances"
#Heat Balances
l1 = 33900;
l2 = 9570;
l3 = 24330;
b1 = 253.8;
b2 = 85.8;
b3 = 85.8;
bt1 = b1*l1;
bt2 = b2*l2;
bt3 = b3*l3;
bt4 = 5688000;
print"\t\t\t\t\tMol/hr\tMol.wt.\tLb/hr\tTemp,DegF\tBtu/lb\tBtu/hr\t\t________________________________________________________________________\t\tHeat balance \t\taround condenser:\t"
print"\t Heat in:\t\t Top plate vapor.......433\t87.3\t\t195\t%.1f\t\t",l1,b1,bt1
print"\t Heat out:\t\t Distillate............"
print"122.5\t78.3\t\t195\t\t\t",l2,b2,bt2
print"\t Reflux................"
print"310.5\t78.3\t\t195\t\t\t",l3,b3,bt3
print"\t Condenser duty, by\t\t difference........... ..... .... ...... .."
print". ..... 5688000\t"
print"\t\t\t\t\t\t\t\t\t_______\t\t\t\t\t\t\t\t\t\t8600000\t\t"
tho=7640000;
lam = 153; # At 246 DegF, Btu/hr
rv = 5800000/153; #Lb/hr
print"\tReboiler vapor is lb/hr\t",rv
to = rv + 10430; #Lb/hr
print"\tTrapout is lb/hr\t",to
print"\t\t\t\t\tMol/hr\tMol.wt.\tLb/hr\tTemp,DegF\tBtu/lb\tBtu/hr\t\t________________________________________________________________________\t"
print"\tHeat in:\t\t Trapout...............522\t92.8\t\t246\t108.0\t5230000\t",to
print"\t Reboiler duty, \t\t by difference....... .... .... ..... ... ..... 5800000\t"
print"\t\t\t\t\t\t\t\t\t_______\t\t\t\t\t\t\t\t\t\t11030000\t\t"
print"\t\tReboiler requirements are\t"
print"\t\tTotal liquid to reboiler\t48330 lb/hr\t\t\tVaporization\t\t\t37900 lb/hr\t\t\tTemperature(nearly isothermal)\t246DegF\t\t\tPressure\t\t\t5 psig\t\t\tHeat load\t\t\t5800000 Btu/hr\t"
print"total heat out is btu/hr",tho
#end
print"\t example 15.8 \n"
print"\t approximate values are mentioned in the book \n"
#Dew point of Overhead
import numpy
vc=numpy.array([6.4, 219.7, 2.3])
#vc(1) = 6.4; # Mol/hr
#vc(2) = 219.7; #Mol/hr
#vc(3) = 2.3; #Mol/hr
K=numpy.array([2.8, 1.01, 0.34])
#K(1) = 2.8; #at 148DegF and 40 psia
#K(2) = 1.01; #at 148DegF and 40 psia
#K(3) = 0.34; #at 148DegF and 40 psia
v=numpy.array([0, 0, 0])
i=0;
while (i<3):
v[0]=vc[0]*K[0];
v[1]=vc[1]*K[1];
v[2]=vc[1]*K[2];
i=i+1;
print"\n\t\tDEW POINT OF OVERHEAD"
print"\n\t\tMol/hr\t\tK(148DegF,40 psia)\tV/K\n"
print"\t\t--------------------------------------------\n"
print vc,K,v
bc=numpy.array([4.1, 49.3, 71.9, 52.5, 54.7, 82.5, 76.6, 22.4])
#bc(1)=4.1; #Mol/hr
#bc(2)=49.3; #Mol/hr
#c(3)=71.9; #Mol/hr
#bc(4)=52.5; #Mol/hr
#bc(5)=54.7; #Mol/hr
#bc(6)=82.5; #Mol/hr
#bc(7)=76.6; #Mol/hr
#bc(8)=22.4; #Mol/hr
tbc=numpy.array([0, 0, 0, 0, 0, 0, 0, 0])
tbc[0]=tbc[0]+bc[0];
i=1
while (i<8):
tbc[i]=tbc[i-1]+bc[i];
i=i+1;
bK=numpy.array([5.8, 3.0, 1.68, 0.98, 0.57, 0.35, 0.21, 0.13])
#bK(1)=5.8; #at 330DegF, 40 psia
#bK(2)=3.0; #at 330DegF, 40 psia
#bK(3)=1.68; #at 330DegF, 40 psia
#bK(4)=0.98; #at 330DegF, 40 psia
#bK(5)=0.57; #at 330DegF, 40 psia
#bK(6)=0.35; #at 330DegF, 40 psia
#bK(7)=0.21; #at 330DegF, 40 psia
#bK(8)=0.13; #at 330DegF, 40 psia
KL=numpy.array([23.8, 148.0, 120.0, 51.4, 31.2, 28.9, 16.1, 2.9])
#KL(1)=23.8;
#KL(2)=148.0;
#KL(3)=120.8;
#KL(4)=51.4;
#KL(5)=31.2;
#KL(6)=28.9;
#KL(7)=16.1;
#KL(8)=2.9;
tk=([0, 0, 0, 0, 0, 0, 0, 0])
i=1;
op=40;
tk[0]=KL[0]
while (i<8):
tk[i]=tk[i-1]+KL[i];
i=i+1;
l=numpy.array([1700, 13900, 13030, 6260, 4240, 4330, 2640, 520])
#l(1)=1700; #Lb/hr
#l(2)=13900; #Lb/hr
#l(3)=13030; #Lb/hr
#l(4)=6260; #Lb/hr
#l(5)=4240; #Lb/hr
#l(6)=4330; #Lb/hr
#l(7)=2640; #Lb/hr
#l(8)=520; #Lb/hr
tl=numpy.array([0, 0, 0, 0, 0, 0, 0, 0,])
i=0;
while (i<8):
tl[i]=tl[i]+l[i];
i=i+1;
print"\n\t\tBUBBLE POINTS OF BOTTOMS\n"
print"\t\tMol/hr\t\tK(330DegF,40psia)\t\tKL\t\tLb/hr\n"
print"\t\t--------------------------------------------------------------\n"
tlr=78177;
i=0;
while (i<8):
print bc[i],bK[i],KL[i],l[i]
i=i+1;
print"\t\t____\t\t\t\t\t____\t\t____\n"
print"\t\t",tbc
print"\t\t\t\t\t",tk
print"\t\t",tl
av = numpy.array([0, 0, 0, 0, 0, 0, 0, 0])
av=tl/tk
hl=4280000;
print"\tAverage mol. wt. \n",av
lh=numpy.array([48894, 16298, 32596])
bl=numpy.array([286, 129, 129])
#lh(1)=48894;#Lb/hr
#lh(2)=16298;#Lb/hr
#lh(3)=32596;#Lb/hr
#bl(1)=286;#Btu/hr
#bl(2)=129;#Btu/hr
#bl(3)=129;#Btu/hr
bh=numpy.array([0, 0, 0])
vap=22700;
i=0;
while (i<3):
bh[0]=lh[0]*bl[0];
i=i+1;
#Heat Balances
print"\n\n\t\t\t\t\t\tHEAT BALANCES:"
print"\n\t\t\t\tMol/hr\t\tMol.wt.\t\tLb/hr\t\tTemp,DegF\t\tBtu/lb\t\tBtu/hr\n\t"
print"\t\t\t----------------------------------------------------------------------------------------"
print"\n\tHeat Balance onCondeser\n\t Heat in:\n\t Top plate vapor......"
#Heat Balances on reboiler
#Assume 30Deg difference between reboiler and bottom plate giving bottom-plate temperature of 300DegF
#Mol/hr from Eq. 15.47
pc=numpy.array([0.056, 0.35, 0.285, 0.122, 0.074, 0.068, 0.038, 0.007])
#pc(1)=0.056;
#pc(2)=0.350;
##pc(3)=0.285;
#pc(4)=0.122;
#pc(5)=0.074;
#pc(6)=0.068;
#pc(7)=0.038;
#pc(8)=0.007;
pk=numpy.array([4.5, 2.25, 1.2, 0.66, 0.38, 0.22, 0.13, 0.07])
#pK(1)=4.5;
#pK(2)=2.25;
#pK(3)=1.20;
#pK(4)=0.66;
#pK(5)=0.38;
#pK(6)=0.22;
#pK(7)=0.13;
#pK(8)=0.07;
print"\n\n\t\tCALCULATION OF BOTTOM PLATE TEMPERATURE\n"
print"\t\ty*\t\t\tReboiler vapor\t\t\t\tK(300DegF,40psia)\tMol*K\n\t\t\t\tV = y*205.7 +\tBottoms\t=\tTrapout\n"
print"\t\t----------------------------------------------------------------------------------------\n"
print "CALCULATION OF BOTTOM PLATE TEMPERATURE"
print" y* Reboiler vapor K(300DegF,40psia) Mol*K"
print" V = y*205.7 + Bottoms = Trapout"
print" ----------------------------------------------------------------------------------------"
print "C5 0.056 11.5 4.1 15.6 4.5 70.29"
print "C6 0.35 72.0 49.3 121.3 2.25 272.91"
print "C7 0.285 58.6 71.9 130.5 1.2 156.63"
print "C8 0.122 25.1 52.5 77.6 0.66 51.21"
print "C9 0.074 15.2 54.7 69.9 0.38 26.57"
print "C10 0.068 14.0 82.5 96.5 0.22 21.23"
print "C11 0.038 7.8 76.6 84.4 0.13 10.97"
print "C12 0.007 1.4 22.4 23.8 0.07 1.67"
print "----------------------------------------------------------------------------------------"
print "1.000 205.7 414.0 619.7 611.5"
print"Reboiler requirements are"
print" Vaporization lb/hr",vap
print" Total liquor to reboiler lb/hr",tlr
print" Heat load Btu/hr",hl
print" Temperature range 300-330 def F"
print" Operating pressure psi",op