# Chapter 16: Nuclear Decay and nuclear Reactions¶

## Example 16.1, Page 557¶

In [1]:
#Calculations&Results
r=(4**(1./3)+208**(1./3))*1.07
print "The sum of radii is  %.f  F"%r
e=1.60*10**-19#in coul
z=82.
x=1.1*10**-10#coul2/nt-m2
Vo=(2*z*e*e)/(x*r*10**-15)
print "The total energy is  %.1e  J"%Vo

The sum of radii is  8  F
The total energy is  4.7e-12  J


## Example 16.2, Page 561¶

In [2]:
import math

#Calculations
x=math.log(math.exp(.827))
t=(math.log(143))/x

#Result
print "The elapsed time is  %.e  year"%(t*10**9)

The elapsed time is  6e+09  year


## Example 16.4, Page 571¶

In [3]:
#Variable declaration
# Using formula logb(m)=n
#n=b**n
F=10**(-5.7)
Y=12.3 #yr
d=365#day/yr
h=24#hr/day
m=60#min/hr
s=60#sec/min

#Calculations
T=(Y*d*h*m*s)/0.693

#Result
print "The life time is  %.1e  s"%T

The life time is  5.6e+08  s


## Example 16.5, Page 573¶

In [4]:
import math

#Variable declaration
h=1.05*10**-34#j-s
F=1.2
T=10**3#in s
m=.91*10**-30#in kg
c=3*10**8#in m/s
M=1

#Calculations
beta_square=(2*math.pi**3*(h**7))/(F*T*(m**5)*(c**4))
beta=math.sqrt(beta_square)

#Result
print "The value of Beta is %.1e  J**2*m**6"%beta

The value of Beta is 3.8e-62  J**2*m**6


## Example 16.7, Page 584¶

In [5]:
#Variable declaration
E=0.129#in Mev
x=931#uc**2

#Calculations&Results
Del_E=-(E)**2/(2*x*191)
print "The value of delta E is %.1e eV"%(Del_E*10**6)
h=6.6*10**-16#ev-sec
T=1.4*10**-10#sec
Tou=h/T
print "The value of Tou is %.1e eV"%Tou

The value of delta E is -4.7e-02 eV
The value of Tou is 4.7e-06 eV


## Example 16.9, Page 589¶

In [6]:
import math

#Variable declaration
Z=0+1+4
A=1+9-1

#Calculations&Results
print "The value of z is %d"%Z
print "The value of A is %d"%A
ka=50
kb=48.1
mB=1
ma=1./9
mb=1./9
x=1./9#ma/mB
y=1./9#mb/mB
part1=kb*(1+x)
part2=ka*(1-y)
part3=(2*math.sqrt(ka*kb*ma*mb))
Q=part1-part2-part3
print "The value of Q is %.1f Mev"%Q
sq_kb_plus=(1.36+math.sqrt(1.36**2+(4*1.11*42.5)))/(2*1.11)
sq_kb_minus=(1.36-math.sqrt(1.36**2+(4*1.11*42.5)))/(2*1.11)
kb_plus=(sq_kb_plus)**2
kb_minus=(sq_kb_minus)**2
print "The maximum neutron produced at angle 30 degree is %.1f Mev"%kb_plus

The value of z is 5
The value of A is 9
The value of Q is -1.9 Mev
The maximum neutron produced at angle 30 degree is 46.7 Mev


## Example 16.10, Page 597¶

In [9]:
#Calculations&Results
n=(1./10)/(54*1.66*10**-27)
d_ohm=10**-5/(10**-1)**2
d_zigma=(1.3*10**-3)*10**-31#m2/nucleus
P=d_zigma*n
#disp(P)
I=(10**-7)/(1.6*10**-19)
dN=I*P
print "The number of events detected are %d events/sec"%dN
#The answer differnce is because of round off

The number of events detected are 90 events/sec


## Example 16.11, Page 606¶

In [8]:
#Variable declaration
E=200*1.6*10**-13#j/neutron
E=10**-11#Rounding off
p=E/(10**-3)
P=10**8#in watt

#Calculations
N=P/p

#Result
print "The number of free electron present is %.e"%N

The number of free electron present is 1e+16