#Given
E=40 #W
lembda=6000*10**-10 #m
h=6.63*10**-34 #Js
c=3*10**8 #m/s
#Calculation
n=(E*lembda)/(h*c)
#Result
print"No. of photons emitted per second are given by ",round(n*10**-19,2),"*10**19"
#Given
a=3.2 #ev
energy=3.8 #ev
e=1.6*10**-19
#Calculation
c=energy-a
Energy=c*e
#Result
print"Kinetic energy of the photoelectron is given by ",Energy,"Joule"
#Given
W=3.45 #ev
h=6.63*10**-34 #Js
c=3*10**8 #m/s
e=1.6*10**-19
#Calculation
lembda=(h*c)/(W*e)
#Result
print"Maximum wavelength of photon is ",round(lembda*10**10,0),"A"
#Given
W=3 #ev
h=6.63*10**-34
e=1.6*10**-19
lembda=3.0*10**-7 #m
c=3*10**8 #m/s
#Calculation
v0=(W*e)/h
v=c/lembda
E=h*(v-v0)
E1=(h*(v-v0))/(1.6*10**-19)
V0=E/e
#Result
print"(a) Threshold frequency ",round(v0*10**-15,2),"*10**15 HZ"
print"(b) Maximum energy of photoelectron ",round(E1,2),"eV"
print"(c) Stopping potential ",round(V0,2),"V"
#Given
v0=6*10**14 #s**-1
h=6.63*10**-34
e=1.6*10**-19
V0=3
#Calculaton
W=h*v0
W0=(h*v0)/e
V=(e*V0+h*v0)/h
#Result
print"work function is given by ",round(W0,3),"ev"
print"frequency is given by ",round(V*10**-15,2),"*10**15 s-1"
#Given
lembda=6800.0*10**-10 #m
h=6.6*10**-34
W=2.3 #ev
c=3*10**8 #m/s
#Calculation
E=((h*c)/lembda)/1.6*10**-19
#Result
print"Energy is ",round(E*10**38,2),"ev"
print"since the energy of incident photon is less then the work function of Na, photoelecrticemession is not possible with the given light."
#Given
lembda=3500*10**-10 #m
h=6.6*10**-34
c=3*10**8 #m/s
#calculation
E=((h*c)/lembda)/1.6*10**-19
#Result
print"Energy is " ,round(E*10**38,2),"ev"
print"1.9 ev < E < 4.2 ev,only metal B will yield photoelectrons"
#Given
lembda=6.2*10**-6
W=0.1 #ev
h=6.6*10**-34 #Js
c=3*10**8 #m/s
e=1.6*10**-19
#Calculation
E=((h*c)/(lembda*e))-W
#Result
print"Maximum kinetic energy of photoelectron ",round(E,1),"ev"
#given
e=1.60*10**-19 #C
slope=4.12*10**-15 #Vs
#Calculation
h=slope*e
#Result
print"Value of plank's constant ",h,"Js"
#Given
W=2.26*1.6*10**-19 #ev
v=10**6 #m/s
m=9*10**-31
#Calculation
V=((1/2.0)*m*v**2+W)/h
#Result
print"frequency of incident radiation ",round(V*10**-15,2),"*10**15 HZ"
#given
V1=.82 #volts
V2=1.85 #volts
lembda1=4.0*10**-7 #m
lembda2=3.0*10**-7
e=1.6*10**-19
c=3.0*10**8 #m/s
#Calculation
lembda=(1/lembda2)-(1/lembda1)
h=(e*(V2-V1))/(c*lembda)
#Result
print"(a) plank's constant ",h,"Js"
print"(b) no, because the stopping potentialdepends only on the wavelength of light and not on its intensity."
#given
h=6.62*10**-34 #Js
c=3*10**8 #m/s
lembda=4560.0*10**-10 #m
p=1*10**-3 #W
a=0.5/100
e=1.6*10**-19
#calculation
E=(h*c)/lembda
N=p/E #Number of photons incedent on the surface
n=N*a
I=n*e
#result
print"Photoelectric current ",round(I*10**6,2),"*10**-6 A"
#given
m0=9.1*10**-31 #Kg
c=3*10**8 #m/s
h=6.6*10**-34 #Js
v1=2.0*10**-10 #m
#Calculation
import math
v= (h/(m0*c))*(1-(math.cos(90))*3.14/180.0)
v2=v+v1
v0=v2-v1
E=(h*c*(v0))/(v1*v2)
b=(1/(math.sin(90)*3.14/180.0))*((v2*10**-10/v1)-math.cos(90)*3.14/180.0)
angle=3.14/2.0-math.atan(b)
#Result
print "(a) the wavelength of scattered photon is ",round(v2*10**10,3),"A"
print"(b) The energy of recoil electron is ",round(E*10**17,2),"*10**-17 J"
print"(c) angle at which the recoil electron appears ",round(angle,2),"degree"
#Given
E=0.9 #Mev
a=120 #degree
m=9.1*10**-31 #Kg
c=3*10**8 #m/s
#calculation
b=((m*c**2)/1.6*10**-19)*10**32
energy=E/(1+2*(E/b)*(3/4.0))
#Result
print "energy of scattered photon ",round(energy,3),"Mev"
#Given
v1=2.000*10**-10 #m
v2=2.048*10**-10 #m
a=180 #degree
a1=60 #degree
h=6.6*10**-34
c=3*10**8
#Calculation
import math
b=(v2-v1)/(1-math.cos(a*3.14/180.0))
V=v1+b*(1-math.cos(60*3.14/180.0))
E=(h*c*(V-v1))/(V*v1)
#Result
print"(a) wavelength of radiation scattered at an angle of 60 degree ",round(V*10**10,3),"A"
print "(b) Energy of the recoiul electron is ",round(E*10**18,2),"*10**-18 J"
#Given
E=4*10**3*1.6*10**-19
m0=9.1*10**-31
b=6.4*10**-16
d=102.39*10**-16
h=6.3*10**-34
c=3*10**8
#Calculation
import math
p=math.sqrt(2*m0*E)
d=b+d
lembda=(2*h*c)/d
#Result
print"Wavelength of incident photon is ", round(lembda*10**10,2),"A"
#Given
E=1.02 #Mev
b=0.51
#Calculation
import math
alpha=E/b
a=1/(math.sqrt(2*(alpha+2)))
angle=2*(math.asin(a)*180/3.14)
e=E/(1.0+alpha*(1-(math.cos(angle*3.14/180.0))))
#Result
print"(a) Angle for symmetric scattering is ", round(angle,1),"degree"
print "(b) energy of the scattered photon is ",round(e,2),"Mev"