#Given
E=-3.4 #ev
h=6.63*10**-34 #Js
#Calculation
import math
n=math.sqrt(-13.6/E)
M=(n*h)/(2.0*math.pi)
#Result
print"Angular momentum of electron is given by ",round(M,36)," Js"
#Given
E=13.6 #ev
n1=4
n2=2
#Calculation
energy=E*((1/2.0**2)-(1/4.0**2))
#Result
print"Energy of photon emitted in the transition is ",energy,"ev"
#Given
n1=3
n2=2
E1=-1.5 #ev
E2=-3.4 #ev
h=6.63*10**-34 #Js
c=3*10**8 #m/s
e=1.6*10**-19
#Calculation
v=(h*c)/((E1-E2)*e)
#Result
print"Wavelength is ",round(v,10),"m"
#Given
v=1200 #A
R=1.097*10**7 #m-1
n1=2.0
n2=3.0
#Calculation
v1=(R*(1-(1/n1**2)))
v2=(R*(1-(1/n2**2)))
V=v1/v2
V1=V*v
#Result
print"Wavelength of the second line is ", V1,"A"
#Given
R=1.097*10**7 #m-1
n=2
#Calculation
v=n**2/(3.0*R)
v1=1/R # for n=infinite
#Result
print"longest wavelength is ",round(v*10**10,0),"A"
print"shortest wavelength is ",round(v1*10**10,1),"A"
#Given
E=47.2 # 3ev
n1=2
n2 =3
#Calculation
import math
Z=math.sqrt(E/(13.6*((1/2.0**2)-(1/3.0**2))))
#Result
print"Atomic number of the atom is ",round(Z,0)
#Given
Z=1.0
n=1.0 #for the ground state of hydrogen
Z1=4 #for Be++
n1=2.0
#Calculation
import math
n1=math.sqrt((n**2/Z)*Z1)
r=(Z1**2/n1**2)/(Z**2/n**2) #Ratio of two energies
#Result
print"nBe++= ", n1
print"comparison is ",r
#Given
Z=3.0
n=3 #for Li++
Z1=1.0
n1=1 #for hydrogen
#Calculation
r=(n**2/Z)/(n1**2/Z1)
#Result
print"orbital ratio of two states ",r
#Given
v=970.6 #A
h=6.63*10**-34 #Js
c=3*10**8 #m/s
#Calculation
import math
E=((h*c)/(v*e))*10**10
En=-13.6+E
n=math.sqrt(-13.6/En)
E3=-13.6/(3.0**2)
vmax=(h*c)/((-E3+En)*(1.6*10**-19))
#Result
print"Longest wavelength is ",round(vmax*10**10),"A"
#Given
Z=2
E=13.6 #ev
E0=10.04 #ev
#Calculation
Ei=Z**2*E
E1=-Ei
E3=E1/(3.0**2)
Ee=E0+E3
#Result
print"Required stopping potential is ", round(Ee,0),"V"
#Given
Ei=4*2.2*10**-18 #Joule
h=6.6*10**-34 #Js
c=3*10**8 #m/s
#Calculation
E1=-Ei
E2=E1/(2.0**2)
v=(h*c)/(Ei+E2)
#Result
print"Wavelength is ", round(v*10**10,0),"A"
#Given
n1=3
n2 =1
E=13.6 #ev
#Calculation
E1=E/(3.0**2) #Binding energy of the atom in n=3 state
energy=E-E1 #Energy required for the atomic electron to jump from n=1 to n=3 state
#Result
print"The electron beam must, therefore be accelerated through a potential difference of ",round(energy,2),"V"
#Given
Rh=1.09678*10**7 #m-1
Rhe=1.09722*10**7 #m-1
#Calculation
Mr=(Rhe-Rh)/(Rh-(Rhe/4.0)) #ratio of electron mass
#Result
print"Ratio of the electron mas to the proton mass ",round(Mr*10**4,2),"*10**-4"