#Given
r=10.0**-14 #m
h=1.054*10**-34 #Js
m=1.67*10**-27
#Calculation
p=h/r
E=(h**2/(2*m*(r**2)))/(1.6*10**-13)
#Result
print"Kinetic energy ",round(E,2),"Mev"
#Given
E=100 #ev
m=9.1*10**-31
e=1.6*10**-19
x=10.0**-6 #m
#Calculation
import math
p=math.sqrt(2*m*E*e)
p1=h/x
theta=p1/p
#Result
print"uncertainty in the angle of emergence ", round(theta*10**4,1),"*10**-4 radians"
print "4 seconds of arc"
#Given
p=0.2*10**-3*10 #Kg m/s
h=1.054*10**-34
x=1*10**-2 #m
#Calculation
p1=h/x
a=p1/p
#Result
print"uncertainty in the angle of emergence ",a,"radians"
print "1.1*10**-24 seconds of arc"
#Given
m=50*10**-3 #kgram
accuracy=0.01
v=300 #m/s
h=1.054*10**-34
#Calculation
p=m*(v*accuracy)/100.0
x=h/p
#Result
print"position of the bullet ",round(x,32),"m"
#Given
t=10.0**-12 #s
h1=1.054*10**-34
h=6.625*10**-34
#Calculation
E=h1/t
v=E/h
#Result
print"uncertainity in energy is ",E,"J"
print"uncertainity in frequency is ",round(v,-9),"Hz"
#Given
r=5*10**-15 #m
h=1.05*10**-34
m=1.67*10**-27
e=1.6*10**-13
#Calculation
xmax=2*r #maximum uncertainity in the position of the nucleon
pmin=h/xmax #minimum uncertainity in the momentum of particle
Kmin=pmin**2/(2.0*m*e)
#Result
print"minimum kinetic energy is",round(Kmin,1),"Mev"
#Given
v=6000*10**-10 #Wavelength in m
t=10**-8 #s
c=3*10**8
#Calculation
import math
v1=v**2/(2.0*math.pi*c*t)
#Result
print"width of a line ",round(v1,15),"m"