#Given
m=9.1*10**-31 #Kg
h=1.05*10**-34 #Js
ev=1.6*10**-19
n1=1
n2=2
n3=3
a=10**-10 #m
#Calculation
import math
E1=((n1**2*math.pi**2*h**2)/(8.0*m*a**2))/(1.6*10**-19) #ev
E2=n2**2*E1
E3=n3**2*E1
#Result
print"three lowest energy levels are ",round(E1,1),"ev,", round(E2,1),"ev and ",round(E3,2),"ev"
print "their eigenfunctions are 1/10**-5*cos(pie*x/2*10**-10),1/10**-5*sin(pie*x/10**-10) and 1/10**-5*cos(3*pie*x/2*10**-10)"
#Given
m=10.0*10**-3 #kgram
l= 10.0*10**-2 #Length in m
h=1.054*10**-34
n1=1
n2=2
n3=3
#Calculation
E1=(((3.14*h*n1)**2)/(2.0*m*(l**2)))/(1.6*10**-19)
E2=(((3.14*h*n2)**2)/(2.0*m*(l**2)))/(1.6*10**-19)
E3=(((3.14*h*n3)**2)/(2.0*m*(l**2)))/(1.6*10**-19)
#Result
print"energies are ", round(E1,46),"ev,",round(E2,46),"ev,",round(E3,45),"ev"
print"these energies are extremely small and close together and hence can't be measured"
#Given
L=10**-9 #Width in m
v=9.0*10**-9
h=1.054*10**-34 #Js
c=3*10**8 #m/s
m=9.1*10**-31
v1=(9.0+1)*10**-9
v2=(9.0-1)*10**-9
#Calculation
import math
n=math.sqrt((4*c*m*(L**2))/(v*math.pi*h))
n1=math.sqrt((4*c*m*(L**2))/(v1*math.pi*h))
n2=math.sqrt((4*c*m*(L**2))/(v2*math.pi*h))
#Result
print"value of n is ",round(n,0),", When + sign is taken ",round(n2,0),", when -ve sign is taken ",round(n1,0)
#Given
L1=0.4
L2=0.6
L=1 #Say
#Calculation
import math
dx=(L2-L1)*L
#for ground state
P1=2/L*(math.sin(math.pi*L/2.0*L))**2*dx
#for first excited state
P2=2/L*(math.sin(2*math.pi*L/2.0*L))**2*dx
#for second excited state
P3=2/L*(math.sin(3*math.pi*L/2.0*L))**2*dx
#Result
print"(a) probability for ground state ", P1
print"(b) probability for first excited state ",round(P2,1)
print"(c) Probability for second excited state ", P3
#Given
a=10.0**-14 #m
m=1.6*10**-27 #mass of a nucleon in kg
h=1.054*10**-34 #Js
#Calculation
import math
Emin=((3*(math.pi**2)*(h**2))/(2.0*m*(a**2)))/(1.6*10**-19)
#Result
print"minimum energy of a nucleon is ", round(Emin*10**-6,1),"Mev"