import math
#variable declaration
print'mathematically ellipsoid is represented by \n((x/a)**2)+((y/b)**2)+((z/c)**2) = 1\n ';
print'\nThe approximate expression for ellipsoid backscattered RCS is given by\n ';
print'\nσ =(π*a**2 b**2 c**2)/[ a**2 (sinθ)**2 (cosɸ)**+ b**2 (sinθ)**2 (sinɸ)^2+c**2 (cosθ)**2 ]**2\n';
print'\nif a = b ,the ellipsoid becomes Roll symmetric,above eqn becomes\n';
print'\nσ = (π* b**4 c**2)/[ a**2 (sinθ)**2 + c**2 (cosθ)**2 ]**2\n';
import math
#variable declaration
print'mathematically ellipsoid is represented by \n((x/a)**2)+((y/b)**2)+((z/c)**2) = 1\n ';
print'\nThe approximate expression for ellipsoid backscattered RCS is given by\n ';
print'\nσ =(π*a**2 b**2 c**2)/[ a**2 (sinθ)**2 (cosɸ)**2+ b**2 (sinθ)**2 (sinɸ)**+c**2 (cosθ)**2 ]**2\n';
print'\nif a = b = c ,the ellipsoid becomes a sphere,above eqn becomes\n';
print'\nσ = (π* a**6)/[ a**2 (sinθ)**2 + a**2 (cosθ)**2 ]**2\n';
print'\nσ = (π* a**6)/[ a**4]\n';
print'\nσ of sphere is π*a**2 ' ;
import math
#variable declaration
print'As it has Circular symmetry ,RCS of circular flat plate is independent \n of ɸ ,RCS depends on aspect angle.\n';
print'\nFor normal incidence θ = 0,then\n';
print'\nσ = (4*π**3*r**4)/(λ**2)\n';
print'\nif r = 1 m then\n';
print'σ = (4*π**3)/(λ**2)' ;
import math
# Variable Declaration
lamda = 0.03; # wavelength in m
Pt = 250*10**3; # transmitter power
G = 2000; # antenna gain
R = 50*10**3; # maximum range
Pr = 10*10**-12; # minimum detectable power
# Calculations
Ae = (lamda*lamda*G)/(4*math.pi); # effective aperture area
RCS = (Pr*(4*math.pi*R*R)**2)/(Pt*G*Ae); # Radar cross section of the target
# Output
print 'Radar cross section of the target is %3.2f'%RCS,'m^2';