import math
#Variable Declaration
P=6 #Transmit power(Watts)
G=48.2 #Antenna Gain(dB)
#Calculation
EIRP=10*math.log10(P)+G #Equivalent isotropic radiated power(dB)
EIRP=round(EIRP)
#Result
print "Hence the Equivalent isotropic radiated power is",EIRP,"dBW"
import math
#Variable Declaration
D=3 #Antenna size(m)
f=12 #Operating Frequency(GHz)
n=0.55 #Aperture efficiency
#Calculation
G=n*(10.472*f*D)**2 #Antenna Gain
G=10*math.log10(G) #Converting Antenna gain to dB
G=round(G,1)
#Result
print "The Antenna gain with given parameters is", G,"dB"
import math
#Variable Declaration
r=42000 #Range between ground station and satellite
f=6000 #Frequency(MHz)
#Calculation
FSL=32.4+20*math.log10(r)+20*math.log10(f) #Free space loss(dB)
FSL=round(FSL,1)
#Result
print "The free space loss at given frequency is", FSL, "dB"
#Variable Declaration
FSL=207 #Free space loss(dB)
RFL=1.5 #receiver feeder loss(dB)
AA=0.5 #Atmospheric Absorption loss(dB)
AML=0.5 #Antenna Alignment loss(dB)
#Calculation
LOSSES=FSL+RFL+AA+AML #Total link loss (dB)
#Results
print "The total link loss is", LOSSES,"dB"
#Variable Declaration
TAn=35 # Antenna Noise Temperature(Kelvin)
TRn=100 # Receiver Noise Temperature(Kelvin)
k=1.38*10**-23 #Boltzman constant(joules)
B=36*10**6 #Bandwidth
#Calculation
N0=(TAn+TRn)*k #noise power density(10**-21 joules)
PN=N0*B/10**-12 #Noise power for given bandwidth(picoWatts)
#Results
print "The noise Power density is", N0,"Joules"
print "The noise power for given bandwidth is",PN,"pW"
#Variable Declaration
TRn=12 #Receiver Noise figure(dB)
G=40 #Gain of LNA(dB)
T0=120 #Noise temperature(Kelvin)
#Calculation
F=10**(TRn/float(10)) #Converting noise power to ratio
Te=(F-1)*290 #Noise Temperature of the amplifier
G=10**(G/10) #Converting Gain of LNA to ratio
Tn=T0+Te/G #Overall Noise Temperature(Kelvin)
Tn=round(Tn,2)
#Result
print "The overall noise temperature is", Tn, "Kelvin"
#Variable Declaration
Tant=35 #Antenna noise temperature(kelvin)
Te1=150 #Receiver noise temperature(kelvin)
L=5 #Cable Loss (dB)
T0=290
G1=10**5 #LNA Gain
F=12 #Receiver Noise figure(dB)
#Calculation
L=10**(L/float(10)) #Converting L into ratio
F=10**(F/float(10)) #Converting F into ratio
Ts=Tant+Te1+(L-1)*T0/G1+L*(F-1)*T0/G1 #Noise Temperature referred to the input(Kelvin)
Ts=round(Ts)
#Result
print "The noise temperature referred to the input is",Ts,"Kelvin"
#Variable Declaration
Tant=35 #Antenna noise temperature(kelvin)
Te1=150 #Receiver noise temperature(kelvin)
L=5 #Cable Loss (dB)
T0=290
G1=10**5 #LNA Gain
F=12 #Receiver Noise figure(dB)
#Calculation
L=10**(L/float(10)) #Converting L into ratio
F=10**(F/float(10)) #Converting F into ratio
Ts=Tant+(L-1)*T0+L*Te1+L*(F-1)*T0/G1 #Noise Temperature referred to the input(Kelvin)
Ts=round(Ts)
#Result
print "The noise temperature referred to the input is",Ts,"Kelvin"
import math
#Variable Declaration
FSL=206 #Free space loss(dB)
APL=1 #Antenna Pointing loss(dB)
AAL=2 #Atmospheric Absorption loss(dB)
RFL=1 #Receiver feeder loss(dB)
EIRP=48 #Equivalent isotropically radiated power(dBW)
f=12 #Frequency(GHz)
GTR=19.5 #G/T ratio(dB/K)
k=-228.60 #Value of k(dB)
#Calculation
LOSSES=FSL+APL+AAL+RFL #Total loss(dB)
CNR=EIRP+GTR-LOSSES-k #Carrier to noise ratio(dBHz)
#Result
print "The carrier to noise ratio is",CNR,"dB"
import math
#Variable Declaration
f=14 #Frequency(GHz)
Ps=-120 #Flux density required to saturate the transponder(dBW/m2)
LOSSES=2 #Propogation Losses(dB)
FSL=207 #Free-space loss(dB)
#Calculation
A0=-21.45-20*math.log10(f) #Effective antenna aperture(dB)
EIRP=Ps+A0+LOSSES+FSL #Equivalent isotropically radiated power(dB)
EIRP=round(EIRP,2)
#Result
print "The earth station EIRP required for saturation is",EIRP,"dBW"
import math
#Variable Declaration
Ps=-91.4 #saturation flux density(dBW/m2)
f=14 #uplink frequency(GHz)
GTR=-6.7 #G/T (dB/k)
BO=11 #Input Back off(dB)
k=-228.6 #Value of k(dB)
RFL=0.6 #receiver feeder loss
#Calculation
A0=-21.5-20*math.log10(f) #Effective antenna aperture(dB)
A0=round(A0,1)
CNR=Ps+A0-BO+GTR-k-RFL #carrier to noise ratio(dB)
#Result
print A0
print "The carrier to noise ratio is",CNR,"dB"
import math
#Variable Declaration
B=36 #Transponder Bandwidth(MHz)
CNR=22 #Carrier to noise ratio(dB)
LOSSES=200 #Total transmission losses(dB)
GTR=31 #Earth station G/T (dB/K)
k=-228.6 #Value of k(dB)
#Calculation
B=10*math.log10(B*10**6) #Converting Bandwidth to dB
EIRP=CNR-GTR+LOSSES+k+B #Equivalent isotropically radiated power(dB)
EIRP=round(EIRP)
#Result
print "Satellite EIRP required is",EIRP,"dB"
import math
#Variable Declaration
B=36*10**6 #Transponder Bandwidth(Hz)
R=0.2 #Roll off factor
GTR=31 #Earth station G/T(dB/K)
LOSSES=200 #Total transmission losses(dB)
k=-228.6 #Value of k(dB)
BER=10**-5 #Value of Bit error rate
EbN0R=9.6 #Value of Eb/N0 from fig.10.17
#Calculation
Rb=2*B/(1+R) #Bit rate(sec^-1)
Rb=10*math.log10(Rb) #Converting Rb into decibels
CNR=EbN0R+Rb #Carrier to noise ratio(dB)
EIRP=CNR-GTR+LOSSES+k #Equivalent Isotropically radiated power(dBW)
Rb=round(Rb,1)
EIRP=round(EIRP,1)
#Results
print "Bit rate that can be accommodated is",Rb,"dB"
print "The EIRP required is",EIRP,"dBW"
import math
#Variable Declaration
EIRP=25 #Satellite saturation value(dBW)
BO=6 #Output Backoff loss(dB)
FSL=196 #Free space loss(dB)
DL=1.5 #Downlink losses(dB)
GTR=41 #Earth station G/T(dB/K)
k=-228.6 #Value of k(dB)
#Calculation
CNR=EIRP-BO+GTR-FSL-DL-k #Carrier to noise ratio(dB)
#Result
print "The Carrier to noise density ratio at the earth station is",CNR,"dB"
#Variable Declaration
EIRP=56 #Equivalent Isotropically radiated power(dBW)
BO=6 #Output Backoff(dB)
TFL=2 #Transmitter feeder loss(dB)
GT=50 #Antenna gain(dB)
#Calculation
PTWTA=EIRP-GT+TFL #Power output of TWTA(dBW)
PTWTAS=PTWTA+BO #Saturated power output of TWTA(dBW)
#Result
print "Power output of the TWTA required for full saturated EIRP is",PTWTAS,"dBW"
import math
#Variable Declaration
alpha=1.9 #Rain attenuation(dB)
CNR=20 #Downlink carrier to noise ratio(dB)
Tn=400 #Effective Noise temperature(Kelvin)
Ta=280 #Reference temperature(Kelvin)
#Calculation
alpha1=10**(alpha/10) #Converting alpha to ratio
Trn=Ta*(1-1/alpha1) #Equivalent noise temperature of rain(kelvin)
Trn=round(Trn,1)
Ts=Tn+Trn #New system noise temperature
delp=10*math.log10(Ts/Tn) #Decibel increase in noise power
CNRN=CNR-delp-alpha #Value below which CNR falls(dB)
CNRN=round(CNRN,2)
#Result
print "The value below which C/N falls for 0.1 percent of time is",CNRN,"dB"
import math
#Variable Declaration
CNR=17.4 #Clear sky input C/N (dB)
T=10 #Threshold level for FM etector(dB)
Ta=272 #Value of Ta(Kelvin)
Tscs=544 #Value of Tscs(Kelvin)
#Calculation
TM=CNR-T #Threshold margin at FM detector(dB)
CNR=10**(CNR/10) #Converting CNR to ratio
NCR=1/float(CNR)
import scipy
import scipy.optimize
def f(A):
y=0.1-NCR*(A+(A-1)*Ta/Tscs)
return y
A=scipy.optimize.fsolve(f,2)
A=10*math.log10(A) #Converting A into decibels
A=round(A)
# Getting the value of probablity of exceeding A from the curve
if (A==6):
P=2.5*10**-4
else:
print "error"
Av=100*(1-P) #Availability(percentage)
#Result
print "The time system stays above threshold is",Av,"percentage"
import math
#Variable Declaration
Nu=100 #Noise spectral density for uplink(dBHz)
Nd=87 #Noise spectral density for downlink(dBHz)
#Calculation
N0CR=10**(-Nu/10)+10**(-Nd/10) #Noise to carrier ratio
CNR=-10*math.log10(N0CR) #Combined c/N0 ratio(dBHz)
CNR=round(CNR,2)
#Result
print "The combined carrier to noise ratio is",CNR,"dBHz"
import math
#Variable declaration
#For uplink
Ps=-67.5 #Saturation flux density(dB)
A0=-37 #Antenna aperture at 6GHz(dB)
IBO=-11 #Input Backoff(dB)
GTRs=-11.6 #Satellite saturation G/T (dB)
k=-228.6 #Value of k(dB)
#For Downlink
EIRP=26.6 #Satellite EIRP(dB)
OBO=-6 #output Backoff(dB)
FSL=-196.7 #Free Space loss(dB)
GTRe=40.7 #Earth station G/T(dB)
#Calculation
CNRu=Ps+A0+IBO+GTRs-k #Carrier to noise ratio for uplink(dB)
CNRd=EIRP+OBO+FSL+GTRe-k#Carrier to noise ratio for downlink(dB)
N0CR=10**(-CNRu/10)+10**(-CNRd/10) #Noise to carrier ratio
CNR=-10*math.log10(N0CR) #Combined c/N0 ratio(dBHz)
CNR=round(CNR,2)
#results
print "The Carrier to noise ratio for uplink is",CNRu,"dB"
print "The Carrier to noise ratio for downlink is",CNRd,"dB"
print "The combined carrier to noise ratio is",CNR,"dBHz"
import math
#Variable Declaration
CNRu=23 #carrier to noise ratio for uplink(dB)
CNRd=20 #carrier to noise ratio for downlink(dB)
CNRm=24 #carrier to noise ratio for intermodulation(dB)
#Calculation
NCR=10**(-CNRu/float(10))+10**(-CNRd/float(10))+10**(-CNRm/float(10)) #Combined Noise to carrier ratio
CNR=-10*math.log10(NCR) #Combined carrier to noise ratio(dB)
CNR=round(CNR,2)
#Result
print "The combined carrier to noise ratio is",CNR,"dB"