import math
from __future__ import division
#initialisation of variables
f=5*10**14; #frequency in Hz (given)
h=6.63*10**-34; #planck's constant in J.sec
#CALCULATIONS
E=h*f; #calculating energy
E1=3*E;
#RESULTS
print"Total Energy in Joule =",'%.3E'%E1;
import math
from __future__ import division
#initialisation of variables
c=3*10**8; #velocity in m/sec
l=5.5*10**-7; #wavelength in m
h=6.63*10**-34; #planck's constant in J.sec
#CALCULATIONS
f=c/l; #calculating frequency
E=h*f; #calculating energy
E1=100/E;
#RESULTS
print"Frequency in Hz =",'%.3E'%f;
print"Energy in Joule =",'%.3E'%E;
print"No. of photons emitted per second =",'%.3E'%E1;
import math
from __future__ import division
#initialisation of variables
m=9.1*10**-31; #mass of electron in kg
v=10**7; #velocity in m/sec
#CALCULATIONS
KE=(1/2)*m*v*v; #calculating kinetic energy in Joule
KE1=KE/(1.6*10**-19);
#RESULTS
print"Kinetic energy in Joule =",'%.3E'%KE;
print"Kinetic energy in eV =",round(KE1,3);
import math
from __future__ import division
#initialisation of variables
e=1.6*10**-19; #charge
ke=200; #kinetic energy in eV
m=1.67*10**-27; #mass in kg
#CALCULATIONS
KE=ke*e; #calculating kinetic energy
v=math.sqrt((2*KE)/m); #calculating velocity
#RESULTS
print"Kinetic Energy in Joule =",'%.3E'%KE;
print"Velocity in m/sec =",round(v,3);
import math
from __future__ import division
#initialisation of variables
e=1.6*10**-19; #charge
c=3*10**8; #velocity in m/sec
ke=106*10**6; #kinetic energy in eV
#CALCULATIONS
KE=ke*e; #calculating kinetic energy
m=KE/(c*c); #Einstein's equation
m1=m/(9.1*10**-31);
#RESULTS
print"Kinetic Energy in Joule =",'%.3E'%KE;
print"Mass in kg =",'%.3E'%m;
print"Times electron mass =",round(m1,3);
import math
from __future__ import division
#initialisation of variables
e=1.6*10**-19; #charge
c=3*10**8; #velocity in m/sec
KE=1.6*10**-19; #change in energy
#CALCULATIONS
m=KE/(c*c); #Einstein's equation
m1=m/(3*10**-26);
#RESULTS
print"Mass in kg =",'%.3E'%m;
print"Times mass of H20 molecule =",'%.3E'%m1;
import math
from __future__ import division
#initialisation of variables
c=3*10**8; #velocity in m/sec
l=5*10**-7; #wavelength in m
h=6.63*10**-34; #planck's constant in J.sec
#CALCULATIONS
f=c/l; #calculating frequency
E=h*f; #calculating energy
E1=E/(1.6*10**-19);
#RESULTS
print"Frequency in Hz =",'%.3E'%f;
print"Energy in Joule =",'%.3E'%E;
print"(a)Max. energy of photons that emerge =",round(E1,3);
import math
from __future__ import division
#initialisation of variables
h=6.63*10**-34; #planck's constant in J.sec
e=1.6*10**-19; #in Coloumb
V=10**4; #potential difference in Volt
#CALCULATIONS
f=(e*V)/h; #calculating frequency
#RESULTS
print"Frequency in Hz =",'%.3E'%f;
import math
from __future__ import division
#initialisation of variables
c=3*10**8; #velocity in m/sec
l=2*10**-11; #wavelength in m
e=1.6*10**-19; #in Coloumb
h=6.63*10**-34; #planck's constant in J.sec
#CALCULATIONS
f=c/l; #calculating frequency
V=(h*f)/e; #calculating energy
#RESULTS
print"Frequency in Hz =",'%.3E'%f;
print"operating Voltage in Volt =",round(V,3);
import math
from __future__ import division
#initialisation of variables
m=10**3; #mass in kg
v=20; #velocity in m/sec
h=6.63*10**-34; #planck's constant in J.sec
#CALCULATIONS
l=h/(m*v); #calculating energy
#RESULTS
print"Wavelength in m =",'%.3E'%l;
import math
from __future__ import division
#initialisation of variables
e=1.6*10**-19; #charge
ke=1.5*10**4; #kinetic energy in eV
m=9.1*10**-31; #mass in kg
h=6.63*10**-34; #planck's constant in J.sec
#CALCULATIONS
KE=ke*e; #calculating kinetic energy
v=math.sqrt((2*KE)/m); #calculating velocity
l=h/(m*v); #calculating wavelength
#RESULTS
print"Kinetic Energy in Joule =",'%.3E'%KE;
print"Velocity in m/sec =",round(v,3);
print"Wavelength in metre =",'%.3E'%l;
import math
from __future__ import division
#initialisation of variables
h=6.63*10**-34; #planck's constant in J.sec
delx=10**-9; #in m
m=9.1*10**-31; #mass in kg
#CALCULATIONS
u=h/(2*3.14*delx); #uncertainty principle
delv=u/m; #uncertainty principle
u1=u*1,;
#RESULTS
print"Uncertainty in electrons momentum in kg.m/sec =",'%.3E'%u;
print"Uncertainty in electrons velocity in m/sec =",round(delv,2);
print"Uncertainty in electrons position in m =",'%.3E'%u1;
import math
from __future__ import division
#initialisation of variables
h=6.63*10**-34; #planck's constant in J.sec
delx=10**-10; #in m
m=9.1*10**-31; #mass in kg
#CALCULATIONS
u=h/(2*3.14*delx); #uncertainty principle
KE=(1/(2*m))*(u*u); #uncertainty principle
#RESULTS
print"Uncertainty in electrons momentum in kg.m/sec =",'%.3E'%u;
print"Uncertainty in electrons kinetic energy in Joule =",'%.3E'%KE;