Chapter 4 Characteristics of Field Effect Transistors And Triodes

Example 4.2 , Page no:118

In [1]:
import math
from __future__ import division

#initialisation of variables
Idon=5 #*10^-3       #mA
Vgsq=6.90 #V
Vt=4 #V

#CALCULATIONS
Idq=Idon*((1-(Vgsq/Vt))**2)

#RESULTS
print"Idq =",round(Idq,3),"mA";
Idq = 2.628 mA

Example 4.5 , Page no:118

In [2]:
import math
from __future__ import division

#initialisation of variables
Vgg=10 #V
Vgsq=8 #V
Vdd=16 #V
Vdsq=12 #V
Idq=1

#CALCULATIONS
Idq1=1*10**-3 #mA
Rs=((Vgg-Vgsq)/Idq1)/1000 #kΩ
Rd=((Vdd-Vdsq-(Idq1*Rs))/Idq)

#RESULTS
print"Rs =",round(Rs,3),"K ohm";
print"Rd =",round(Rd),"K ohm";
Rs = 2.0 K ohm
Rd = 4.0 K ohm

Example 4.8 , Page no:120

In [3]:
import math
from __future__ import division

#initialisation of variables
Rs=750 #kΩ
Vdd=24 #V
Vdsq=15 #V
Idq=0.002 #mA

#CALCULATIONS
Rd=((Vdd-Vdsq-(Idq*Rs))/Idq)/1000

#RESULTS
print"Rs =",round(Rs,3),"K ohm";
print"Rd =",round(Rd,3),"K ohm";
Rs = 750.0 K ohm
Rd = 3.75 K ohm

Example 4.10 , Page no:121

In [4]:
import math
from __future__ import division

#initialisation of variables
Idq=-8 #mA
Idss=-10 #mA
Vp0=-4 #V
Vdd=-20
Rd=1.5

#CALCULATIONS
Vgsq=Vp0*(((Idq/Idss)**(1/2))-1)
Vdsq1=Vdd-Idq*Rd

#RESULTS
print"Vgsq =",round(Vgsq,3),"v";
print"Vdsq =",round(Vdsq1,3),"v";
Vgsq = 0.422 v
Vdsq = -8.0 v

Example 4.11 , Page no:121

In [5]:
import math
from __future__ import division

#initialisation of variables
Vt=4 #V
R1=50 #k ohm
R2=0.4 #M ohm
Rs=0
Rd=2 #k ohm
Vdd=15 #V
Idon=10 #*10^-3

#CALCULATIONS
Vgsq=(R1/(R1+R2*10**3))*Vdd
Idq=Idon*((1-(Vgsq/Vt))**2)
Vdsq=Vdd-(Idq*Rd)

#RESULTS
print"Vgsq =",round(Vgsq,3),"V";
print"Idq =",round(Idq,3),"mA";
print"Vdsq =",round(Vdsq,3),"V";
Vgsq = 1.667 V
Idq = 3.403 mA
Vdsq = 8.194 V

Example 4.13 , Page no:123

In [6]:
import math
from __future__ import division

#initialisation of variables
Vgsq=-4.5 #V
Idq=-8 #mA
VT=-3 #V
Idq=-16
Vgsq=-5

#CALCULATIONS
Idon=(Idq/(1-Vgsq/VT)**2)
Vgsq1=VT*(1-(Idq/Idon)**(1/2))

#RESULTS
print"Idon=",round(Idon,3),"mA";
print"Vgsq=",round(Vgsq1,2),"V";
Idon= -36.0 mA
Vgsq= -1.0 V

Example 4.14 , Page no:123

In [7]:
import math
from __future__ import division

#initialisation of variables
Vdd=15 #v
Vdsq=7 #v 
Rs=3 #kΩ
Rd=1 #kΩ

#CALCULATIONS
Idq=((Vdd-Vdsq)/(Rs+Rd))
Vgsq=-(Idq*Rd)

#RESULTS
print"Idq=",round(Idq,3),"mA";
print"Vgsq=",round(Vgsq,3),"V";
Idq= 2.0 mA
Vgsq= -2.0 V

Example 4.18 , Page no:126

In [8]:
import math
from __future__ import division

#initialisation of variables
Idq1=1.22 #mA
Vdsq1=0 #V
Vdd=15 #V
Rs=2 #kΩ
Rd=5 #kΩ

#CALCULATIONS
Vgsq1=-(Idq1*Rs)
Vdsq2=Vdd-Vdsq1-Idq1*(Rs+Rd)

#RESULTS
print"Vgsq=",round(Vgsq1,3),"V";
print"Vdsq2=",round(Vdsq2,3),"V";
Vgsq= -2.44 V
Vdsq2= 6.46 V

Example 4.19 , Page no:127

In [9]:
import math
from __future__ import division

#initialisation of variables
Idq1=0 #mA
Idq2=2.92 #mA
Vdd=15 #V
Vgsq1=-4 #V
Rs=2 #kΩ
Rd=1 #kΩ
Rd1=1
Idq12=0

#CALCULATIONS
Vgsq2=-Vgsq1-Idq2*Rs
Vdsq1=Vdd-(Idq1+Idq2)*Rd-Idq2*Rs-Vgsq2
Vdsq2=Vdd-(Idq12+Idq2)*Rd1-Idq2*Rs

#RESULTS
print"Vgsq2=",round(Vgsq2,3),"V";
print"Vdsq1=",round(Vdsq1,3),"V";
print"Vdsq2=",round(Vdsq2,3),"V";
Vgsq2= -1.84 V
Vdsq1= 8.08 V
Vdsq2= 6.24 V

Example 4.20 , Page no:128

In [10]:
import math
from __future__ import division

#initialisation of variables
Vdd=15 #V
R2=40 #kΩ
R1=60 #kΩ

#CALCULATIONS
Vgsq=(R2/(R2+R1))*Vdd

#RESULTS
print"Vgsq=",round(Vgsq,3),"V";
Vgsq= 6.0 V

Example 4.23 , Page no:130

In [11]:
import math
from __future__ import division

#initialisation of variables
Idss=10 #mA
Vgsq=-1.34 #V
Vp0=4 #V
Rs=2 #kΩ
Vdd=15 #V
Rd=500 #kΩ

#CALCULATIONS
Idq=Idss*((1+(Vgsq/Vp0))**2)
Vdsq=Vdd-Idq*10**-3*(Rs*10**3+Rd)

#RESULTS
print"Idq=",round(Idq,3),"mA";
print"Vdsq=",round(Vdsq,3),"V";
Idq= 4.422 mA
Vdsq= 3.944 V

Example 4.24 , Page no:130

In [12]:
import math
from __future__ import division

#initialisation of variables
Ip=15 #mA
Vp=100 #v
Vp0=4 #v
Vg=-4 #v

#CALCULATIONS
k=(Ip/(Vp**(3/2)))*1000
m=-(Vp/Vg)

#RESULTS
print"the perveance k=",round(k,3),"mA/V^3/2";
print"the amplification factor  m=",round(m,3),"mA";
the perveance k= 15.0 mA/V^3/2
the amplification factor  m= 25.0 mA

Example 4.26 , Page no:130

In [13]:
import math
from __future__ import division

#initialisation of variables
Rl=10 #kΩ
Vpp=2.4 #v

#CALCULATIONS
Ip=(1/20) #mA
n=(((Ip)*Rl)/Vpp)

#RESULTS
print"the perveance  n=",round(n,3),"percent";
the perveance  n= 0.208 percent