import math
#Variable declaration
T=300#K
Na=10**16# cm^-3
ni=1.5*10**10 # cm^-3
epsilon0=8.85*10**-14# F/m
epsilons=11.7
e=1.6*10**-19# eV
Vt=0.0259 # V
#Calculations&Results
phifp=Vt*math.log(Na/ni)
print "the value of phisp is %.3f V"%phifp
xdT=(4*(epsilons*epsilon0)*phifp/(e*Na))**0.5
print "the value of xdT is %.e meter"%xdT
import math
#Variable declaration
phim=3.20# v
x=3.25# v
Eg=1.11#eV
Na=10**14# cm^-3
k=1.3806*10**-23# JK^-1
T=300# K
ni=1.5*10**10# cm^-3
e=1.6*10**-19# eV
#Calculations&Results
phifp=(((k*T)/e)*math.log(Na/ni))
print "the value of phifp is %.3f V"%phifp
phims=phim-(x+(Eg/2)+phifp)
print "work function difference is %.2f V "%phims
#Variable declaration
Nd=10**16# cm^-3
tox=500*10**-8# a=500A =500*10^-8 cm
Qss=10**11# electronic charge per cm
phims=-1.1# V
e=1.6*10**-19# eV
epsilonox=3.9
epsilon0=8.85*10**-14# F/m
#Calculations&Results
C=((epsilonox*epsilon0)/tox)
print "the value of C is %.1e F/cm^2"%C
Qss=10**11*e
print "the value of Qss is %.1e C/cm^2"%Qss
VFB=phims-(Qss/C)
print "the value of VFB is %.2f V "%VFB
import math
#Variable declaration
T=300# K
k=1.3806*10**-23# JK^-1
Na=3*10**16# cm^-3
Qss=10**11# cm^-2
VTN=0.65# V
phims=-1.13# V
epsilon0=8.85*10**-14# F/m
epsilons=11.7
epsilonox=3.9
ni=1.5*10**10# cm^-3
e=1.6*10**-19# eV
#Calculations&Results
phifp=(((k*T)/e)*math.log(Na/ni))
print "the value of phifp is %.3f V"%phifp
xdT=(4*(epsilons*epsilon0)*phifp/(e*Na))**0.5
print "the value of xdT is %.2f micro-meter"%(xdT/10**-4)
QSD=e*Na*xdT #[QSD(max)]=e*Na*xdT
print "the value of QSD is %.2e C.cm^2"%QSD
tox=((VTN-phims-2*phifp)*(epsilonox*epsilon0))/(QSD-(Qss*e))
print "tox is %.f A"%(tox/10**-7)
import math
#Variable declaration
T=300# K
k=1.3806*10**-23# JK^-1
Na=10**14# cm^-3
Qss=10**10# cm^-2
tox=500*10**-8# a=500A =500*10**-8 cm
phims=-0.83# V
epsilon0=8.85*10**-14# F/m
epsilons=11.7
epsilonox=3.9
ni=1.5*10**10# cm^-3
e=1.6*10**-19# eV
#Calculations&Results
phifp=(((k*T)/e)*math.log(Na/ni))
print "the value of phifp is %.3f V"%phifp
xdT=(4*(epsilons*epsilon0)*phifp/(e*Na))**0.5
print "the value of xdT is %.3f milli-m"%(xdT/10**-3)
QSD=e*Na*xdT# [QSD(max)]=e*Na*xdT
print "the value of QSD is %.2e C/cm^2"%QSD
VTN=(QSD-(Qss*e))*(tox/(epsilonox*epsilon0))+phims+2*phifp# VTN=(QSD(max)-Qss)*(tox/epsilonox)+phims+2*phifp
print "the value of VTN is %.3f V"%VTN
import math
#Variable declaration
T=300# K
k=1.3806*10**-23# JK^-1
Qss=10**10# cm^-2
tox=650*10**-8# tox=650A =650*10**-8 cm
epsilon0=8.85*10**-14# F/m
epsilons=11.7
epsilonox=3.9
ni=1.5*10**10# cm^-3
e=1.6*10**-19# eV
Nd=2.5*10**14# cm^-3
#Calculations&Results
phifn=(((k*T)/e)*math.log(Nd/ni))#phifn=V1*log(Nd/ni)=((k*T)/e)*log(Nd/ni)
print "the value of phifn is %.3f V "%phifn
xdT=(4*(epsilons*epsilon0)*phifn/(e*Nd))**0.5
print "the value of xdT is %.2f milli-meter "%(xdT/10**-3)
QSD=e*Nd*xdT# [QSD(max)]=e*Na*xdT
print "the value of QSD is %.2e C/cm^2"%QSD
phims=-0.35# V
VTP=(-QSD-(Qss*e))*(tox/(epsilonox*epsilon0))+phims-(2*phifn)# VTP=(-QSD(max)-Qss)*(tox/epsilonox)+phims+2*phifn
print "the value of VTP is %.3f V"%VTP
import math
#Variable declaration
T=300 #K
k=8.617*10**-5#eV/K
e=1.6*10**-19 #C
espox=3.9
esp0=8.85*10**-14
esp=11.7
tox=550*10**-8#550 Armstrong
Na=10**16#cm^-3
ni=1.5*10**10 #cm^-3
#Calculations&Results
Cox=(espox*esp0)/tox
print "oxide capacitance is %.2e F/cm^2 "%Cox
phi=(k*T)*math.log(Na/ni)
print "mini capacitance is %.3f V "%phi
xdt=math.sqrt((4*esp*esp0*phi)/(e*Na))
print "xdt is %.2e cm^-4 "%xdt
Cmin=(espox*esp0)/(tox+(espox/esp)*xdt)
print "Cmin is %.2e F/cm^2 "%Cmin
a=Cmin/Cox
print "ratio of Cmin to Cox is= %.3f"%a
Cfb=(espox*esp0)/(tox+(espox/esp)*math.sqrt((k*T*esp*esp0)/(e*Na)))
print "Cfb in F/cm^2 is= %.2e"%Cfb
b=Cfb/Cox
print "ratio of Cfb to Cox is = %.2f "%b
#Variable declaration
T=300 #K
k=8.617*10**-5#eV/K
e=1.6*10**-19 #C
Cox=6.9*10**-8#F/cm2
esp0=8.85*10**-14
Vtau=0.65#V
VGS=5#V
L=1.25*10**-4#cm
u=650#cm**2/Vs
IDsat=4*10**-3#A
#Calculations
W=(IDsat*2*L)/(u*Cox*(VGS-Vtau)**2)
#Result
print "W is %.1f micro-meter"%(W/10**-4)
#Variable declaration
T=300 #K
k=8.617*10**-5#eV/K
e=1.6*10**-19 #C
Cox=6.9*10**-8#F/cm2
esp0=8.85*10**-14
Vtau=0.65#V
VGS1=1.5#V
VGS2=2.5#V
VDS=0.10#V
L=2*10**-6#cm
u=650#cm**2/Vs
ID1=35*10**-6#A
ID2=75*10**-6#A
W=15*10**-6#m
#Calculations
un=(ID2-ID1)*L/(W*Cox*(VGS2-VGS1)*VDS)
#Result
print "un is %.f cm^2/Vs"%un
import math
#Variable declaration
T=300# K
Na=3*10**16# cm^-3
tox=500*10**-8# tox=500A =500*10**-8 cm
k=1.3806*10**-23# JK^-1
VSB=1# V
epsilon0=8.85*10**-14# F/m
epsilons=11.7
epsilonox=3.9
ni=1.5*10**10# cm^-3
e=1.6*10**-19# eV
#Calculations&Results
phifp=(((k*T)/e)*math.log(Na/ni))# phifp=V1*log(Na/ni)=((k*T)/e)*log(Na/ni)
print "the value of phifp is %.3f V"%phifp
Cox=(epsilon0*epsilonox)/tox
print "the value of Cox is %.1e F/cm^2"%Cox
deltaVT=(math.sqrt(2*e*(epsilon0*epsilons)*Na))/Cox*((math.sqrt(2*phifp+VSB))-(math.sqrt(2*phifp)))
print "the value of deltaVT is %.2f V"%deltaVT
import math
#Variable declaration
micron=400.# cm^2/V-s
L=4*10**-6# m
VT=1# V
VGS=3# V
#Calculations
ftau=(micron*(VGS-VT))/(2*math.pi*L*L)
#Result
print "the value of fr = %.f MHz"%(ftau/10**10)