Chapter 2: Introduction to Quantum Mechanics

Example 2.1, Page 47

In [2]:
#Variable declaration
lamda=0.708*10**-8# cm
h=6.625*10**-34# J*s Plank's constant
c=3.0*10**10# cm/s
e=1.6*10**-19# eV

#Calculations&Results
E=(h*c)/lamda# E=hv=hc/lamda
print "The value of E is %.2e J"%E
E=E/e
print "The value of E is %.2e eV"%E
The value of E is 2.81e-15 J
The value of E is 1.75e+04 eV

Example 2.2,Page 49

In [3]:
#Variable declaration
m=9.11*10**-31# kg*m/s
v=10**5#m/s
h=6.625*10**-34#js

#Calculations&Results
p=m*v
print "momentum is %.2e"%p
lamda=h/p
print "de broglie wavelength in meter is %.2e"%(lamda)
momentum is 9.11e-26
de broglie wavelength in meter is 7.27e-09

Example 2.3, Page 58

In [4]:
import math

#Variable declaration
a=5*10**-10# a=5A = 5*10**-8cm
h=1.054*10**-34# J*s Planck's constant 
m=9.11*10**-31# kg*m/s
e=1.6*10**-19# eV

#Calculations&Results
print "The energy levels are:"
for n in range(1,4):
    En=((h**2*n**2*math.pi**2)/(2*m*a**2))/e
    print "For n = %d, E = %.2f eV"%(n,En)

    
The energy levels are:
For n = 1, E = 1.50 eV
For n = 2, E = 6.02 eV
For n = 3, E = 13.54 eV
In [ ]: