# given data
V_CEQ= 7.5## V
R_L= 50## Ω
I_Csat= V_CEQ/R_L## A
I_CQ= 0.01*I_Csat## A
P_DQ= V_CEQ*I_CQ## W
PP= 2*V_CEQ## V
P_Dmax= PP**2/(40*R_L)## W
P_Lmax= PP**2/(8*R_L)## W
# The value of P_DQ
P_DQ= P_DQ*10**3## mW
# The value of P_Dmax
P_Dmax= P_Dmax*10**3## mW
# The value of P_Lmax
P_Lmax= P_Lmax*10**3## mW
print "The value of P_DQ = %.2f mW"%P_DQ
print "The value of P_Dmax = %.2f mW"%P_Dmax
print "The value of P_Lmax = %.2f mW"%P_Lmax
# given data
V_CC= 15## V
I_Csat= 150## mA
P_Lmax= 563## mW
I= 0.02*I_Csat## mA
Idc= 0.318*I_Csat## mA
I_CC= I+Idc## mA
P_CC= V_CC*I_CC## mW
# The efficiency of amplifier
Eta= P_Lmax/P_CC*100## %
print "The efficiency of amplifier = %.2f %%"%Eta
# Note: The answer in the book is not accurate
from numpy import arange
%matplotlib inline
from matplotlib.pyplot import plot,xlabel,ylabel,title,show
# given data
V_CC= 40.0## V
V_CEQ= 20.0## V
R_L= 10.0## Ω
I_Csat= V_CEQ/R_L## A
V_CEcutoff= V_CEQ## V
V_CE= arange(0,0.1+V_CEcutoff,0.1) # V
I_C= (V_CEQ-V_CE)/R_L## A
# The plot of ac load line,
plot(V_CE,I_C)
xlabel("VCE in volts")
ylabel("IC in A")
title("AC load line")
show()
print "AC load line shown in figure"
# given data
V_CC= 40## V
V_BE= 0.7## V
R= 1*10**3## Ω
R_L= 10## Ω
V_CEQ= 20## V
I_CQ= (V_CC-2*V_BE)/(2*R)## A
# The value of P_DQ
P_DQ= V_CEQ*I_CQ## W
print "The value of P_DQ = %.2f W"%P_DQ
PP= 2*V_CEQ## V
# The value of P_Lmax
P_Lmax= PP**2/(8*R_L)## W
# The value of P_Dmax
P_Dmax= PP**2/(40*R_L)## W
print "The value of P_Lmax = %.2f W"%P_Lmax
print "The value of P_Dmax = %.2f W"%P_Dmax
# given data
V_E= 1.43## V
R_E= 100## Ω
R_L= 100## Ω
R_C= 1*10**3## Ω
bita= 200#
Vt= 25*10**-3## V
I_E= V_E/R_E## A
I_CQ= I_E## A
Zin= bita*R_L## Ω
r_desh_e= Vt/I_CQ## Ω
# The voltage gain of the driver stage
A= (R_C*Zin/(R_C+Zin))/(R_E+r_desh_e)#
print "The voltage gain of the driver stage = %.2f"%A
# On ignoring Zin and r_desh_e,
A= R_C/R_E#
print "On ignoring the value of Zin and r'e, the voltage gain = %.2f"%A
# given data
V_CC= 30.0## V
PP= V_CC## V
R_L= 100.0## Ω
# The value of P_Lmax
P_Lmax= PP**2/(8*R_L)## W
print "The value of PP = %.2f volts"%PP
print "The value of P_Lmax = %.2f W"%P_Lmax
# given data
R_C= 1*10**3## Ω
r_desh_e= 2.5##in Ω
Zin= 1.0*10**3## Ω
A2= 10## unit less
A3= 1## unit less
A1= (R_C*Zin/(R_C+Zin))/r_desh_e## unit less
# The overall voltage gain
A= A1*A2*A3#
print "The overall voltage gain = %.2f"%A
# given data
V_CC= 50.0## V
V_CEsat= 1.0## V
R_L= 5## Ω
bita_dc= 90## unit less
I_Csat= (V_CC-V_CEsat)/R_L## A
# The minimum base current that produces saturation
I_Bsat= I_Csat/bita_dc## A
I_Bsat= I_Bsat*10**3## mA
print "The minimum base current that produces saturation = %.2f mA"%I_Bsat
# given data
I_Csat= 109*10**-3## A
bita_dc= 200#
R_B= 1*10**3## Ω
V_BE1= 0.7## V
V_BE2= 1.6## V
# The base current,
I_Bsat= I_Csat/bita_dc## A
# The input voltage
Vin= I_Bsat*R_B+V_BE1+V_BE2## V
print "The input voltage = %.2f volts"%Vin