# given data
V_EE= 10## V
V_BE= 0.7## V
R_E= 20*10**3## Ω
V_CC= 25## V
R_C= 10*10**3## Ω
# The emitter current
I_E= (V_EE-V_BE)/R_E## A
I_C= I_E## A
# The collector to base voltage,
V_CB= V_CC-I_C*R_C## V
print "The value of V_CB = %.2f volts"%V_CB
# given data
V_EE= 12## V
V_BE= 0.7## V
R_E= 5.6*10**3## Ω
V_CC= 15## V
R_C= 6.8*10**3## Ω
# The emitter current,
I_E= (V_EE-V_BE)/R_E## A
I_C= I_E## A
# The collector to base voltage
V_CB= V_CC-I_C*R_C## V
print "The value of V_CB = %.2f volts"%V_CB
# Note : The answer in the book is not accurate.
# given data
V_EE= 15## V
V_BE= 0.7## V
R_E= 22*10**3## Ω
Vin= 2*10**-3## V
V= 25*10**-3## V
R1= 10*10**3## Ω
R2= 30*10**3## Ω
I_E= (V_EE-V_BE)/R_E## A
# The ac resistance of emitter diode,
r_desh_e= V/I_E## Ω
r_L= R1*R2/(R1+R2)## Ω
# The voltage gain
A= r_L/r_desh_e#
# The output voltage
Vout= A*Vin## V
Vout= Vout*10**3## mV
print "The output voltage = %.2f mV"%Vout
# given data
V_EE= 10## V
V_BE= 0.7## V
R_E= 6.8*10**3## Ω
Rs= 100## Ω
R1= 3.3*10**3## Ω
R2= 1.5*10**3## Ω
V= 25*10**-3## V
Vs= 1*10**-3## V
I_E= (V_EE-V_BE)/R_E## A
r_desh_e= V/I_E## Ω
Zin= r_desh_e## Ω
# The input voltage to the emitter,
Vin= Zin*Vs/(Rs+Zin)## V
r_L= R1*R2/(R1+R2)## Ω
# The voltage gain,
A= r_L/r_desh_e#
# The output voltage
Vout= A*Vin## V
Vout= Vout*10**3## mV
print "The output voltage = %.2f mV"%Vout